Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 84: 117259, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37018877

RESUMEN

An increasing number of research reports are describing modifications of the E3 ligand, in particular, cereblon (CRBN) ligands, to improve the chemical and metabolic stabilities as well as the physical properties of PROTACs. In this study, phenyl-glutarimide (PG) and 6-fluoropomalidomide (6-F-POM), recently used as CRBN ligands for PROTAC design, were applied to hematopoietic prostaglandin D2 synthase (H-PGDS)-targeted PROTACs. Both PROTAC-5 containing PG and PROTAC-6 containing 6-F-POM were found to have potent activities to induce H-PGDS degradation. Furthermore, we obtained in vitro ADME data on the newly designed PROTACS as well as our previously reported PROTACs(H-PGDS) series. Although all PROTACs(H-PGDS) are relatively stable toward metabolism, they had poor PAMPA values. Nevertheless, PROTAC-5 showed Papp values similar to TAS-205, which is in Phase 3 clinical trials, and is expected to be the key to improving the pharmacokinetics of PROTACs.


Asunto(s)
Prostaglandinas , Quimera Dirigida a la Proteólisis , Ubiquitina-Proteína Ligasas , Ligandos , Prostaglandinas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/farmacología
2.
RSC Med Chem ; 13(12): 1495-1503, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36561070

RESUMEN

Degradation of hematopoietic prostaglandin D2 synthase (H-PGDS) by proteolysis-targeting chimeras (PROTACs) is expected to be important in the treatment of allergic diseases and Duchenne's muscular dystrophy. We recently reported that PROTAC(H-PGDS)-7 (PROTAC1), which is composed of H-PGDS inhibitor (TFC-007) and cereblon (CRBN) E3 ligase ligand (pomalidomide), showed potent H-PGDS degradation activity. Here, we investigated the structure-activity relationships of PROTAC1, focusing on the C4- or C5-conjugation of pomalidomide, in addition, the H-PGDS ligand exchanging from TFC-007 with the biaryl ether to TAS-205 with the pyrrole. Three new PROTACs were evaluated for H-PGDS affinity, H-PGDS degrading activity, and inhibition of prostaglandin D2 production. All compounds showed high H-PGDS degrading activities, but PROTAC(H-PGDS)-4-TAS-205 (PROTAC3) was slightly less active than the other compounds. Molecular dynamics simulations suggested that the decrease in activity of PROTAC3 may be due to the lower stability of the CRBN-PROTAC-H-PGDS ternary complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...