RESUMEN
Long-range retrograde axonal transport in neurons is driven exclusively by the microtubule motor cytoplasmic dynein. The efficient initiation of dynein-mediated transport from the distal axon is critical for normal neuronal function, and neurodegenerative disease-associated mutations have been shown to specifically disrupt this process. Here, we examine the role of dynamic microtubules and microtubule plus-end binding proteins (+TIPs) in the initiation of dynein-mediated retrograde axonal transport using live-cell imaging of cargo motility in primary mouse dorsal root ganglion neurons. We show that end-binding (EB)-positive dynamic microtubules are enriched in the distal axon. The +TIPs EB1, EB3, and cytoplasmic linker protein-170 (CLIP-170) interact with these dynamic microtubules, recruiting the dynein activator dynactin in an ordered pathway, leading to the initiation of retrograde transport by the motor dynein. Once transport has initiated, however, neither the EBs nor CLIP-170 are required to maintain transport flux along the mid-axon. In contrast, the +TIP Lis1 activates transport through a distinct mechanism and is required to maintain processive organelle transport along both the distal and mid-axon. Further, we show that the EB/CLIP-170/dynactin-dependent mechanism is required for the efficient initiation of transport from the distal axon for multiple distinct cargos, including mitochondria, Rab5-positive early endosomes, late endosomes/lysosomes, and TrkA-, TrkB-, and APP-positive organelles. Our observations indicate that there is an essential role for +TIPs in the regulation of retrograde transport initiation in the neuron.
Asunto(s)
Transporte Axonal/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuronas/citología , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Células Cultivadas , Citoplasma/metabolismo , Complejo Dinactina , Dineínas/genética , Femenino , Ganglios Espinales/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Masculino , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Proteínas de Neoplasias/metabolismo , Neuronas/metabolismo , Fotoblanqueo , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismoRESUMEN
Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of ß-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , Demencia Frontotemporal/metabolismo , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Transcripción Genética , Vía de Señalización Wnt , Proteína Wnt1/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Células Cultivadas , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Presenilina-1/biosíntesis , Presenilina-1/genética , Progranulinas , Proteína Wnt1/genéticaRESUMEN
Autism spectrum disorder (ASD) is a highly heritable, behaviorally defined, heterogeneous disorder of unknown pathogenesis. Several genetic risk genes have been identified, including the gene encoding the receptor tyrosine kinase MET, which regulates neuronal differentiation and growth. An ASD-associated polymorphism disrupts MET gene transcription, and there are reduced levels of MET protein expression in the mature temporal cortex of subjects with ASD. To address the possible neurodevelopmental contribution of MET to ASD pathogenesis, we examined the expression and transcriptional regulation of MET by a transcription factor, FOXP2, which is implicated in regulation of cognition and language, two functions altered in ASD. MET mRNA expression in the midgestation human fetal cerebral cortex is strikingly restricted, localized to portions of the temporal and occipital lobes. Within the cortical plate of the temporal lobe, the pattern of MET expression is highly complementary to the expression pattern of FOXP2, suggesting the latter may play a role in repression of gene expression. Consistent with this, MET and FOXP2 also are reciprocally expressed by differentiating normal human neuronal progenitor cells (NHNPs) in vitro, leading us to assess whether FOXP2 transcriptionally regulates MET. Indeed, FOXP2 binds directly to the 5' regulatory region of MET, and overexpression of FOXP2 results in transcriptional repression of MET. The expression of MET in restricted human neocortical regions, and its regulation in part by FOXP2, is consistent with genetic evidence for MET contributing to ASD risk.
Asunto(s)
Trastorno Autístico/genética , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Proto-Oncogénicas c-met/biosíntesis , Receptores de Factores de Crecimiento/biosíntesis , Regiones no Traducidas 5'/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Trastornos Generalizados del Desarrollo Infantil/genética , Trastornos Generalizados del Desarrollo Infantil/metabolismo , Trastornos Generalizados del Desarrollo Infantil/patología , Trastornos del Conocimiento/patología , Femenino , Factores de Transcripción Forkhead/biosíntesis , Factores de Transcripción Forkhead/metabolismo , Humanos , Recién Nacido , Masculino , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Receptores de Factores de Crecimiento/antagonistas & inhibidores , Receptores de Factores de Crecimiento/genética , Factores de RiesgoRESUMEN
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas Fetales/metabolismo , Proteínas de Microfilamentos/metabolismo , Morfogénesis/fisiología , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Evolución Biológica , Clasificación , Citoesqueleto/metabolismo , Proteínas Fetales/genética , Forminas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas Nucleares/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/clasificación , Isoformas de Proteínas/genéticaRESUMEN
Wiskott-Aldrich Syndrome (WAS) family proteins are Arp2/3 activators that mediate the branched-actin network formation required for cytoskeletal remodeling, intracellular transport and cell locomotion. Wasp and Scar/WAVE, the two founding members of the family, are regulated by the GTPases Cdc42 and Rac, respectively. By contrast, linear actin nucleators, such as Spire and formins, are regulated by the GTPase Rho. We recently identified a third WAS family member, called Wash, with Arp2/3-mediated actin nucleation activity. We show that Drosophila Wash interacts genetically with Arp2/3, and also functions downstream of Rho1 with Spire and the formin Cappuccino to control actin and microtubule dynamics during Drosophila oogenesis. Wash bundles and crosslinks F-actin and microtubules, is regulated by Rho1, Spire and Arp2/3, and is essential for actin cytoskeleton organization in the egg chamber. Our results establish Wash and Rho as regulators of both linear- and branched-actin networks, and suggest an Arp2/3-mediated mechanism for how cells might coordinately regulate these structures.
Asunto(s)
Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/genética , Animales , Citoesqueleto/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Femenino , Ratones , Ratones Endogámicos BALB C , Proteínas de Microfilamentos/genética , Microtúbulos/metabolismo , Oogénesis/fisiología , Ovario/citología , Ovario/metabolismo , Proteínas de Transporte Vesicular/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteínas de Unión al GTP rho/genéticaRESUMEN
Subtelomeres are duplication-rich, structurally variable regions of the human genome situated just proximal of telomeres. We report here that the most terminally located human subtelomeric genes encode a previously unrecognized third subclass of the Wiskott-Aldrich Syndrome Protein family, whose known members reorganize the actin cytoskeleton in response to extracellular stimuli. This new subclass, which we call WASH, is evolutionarily conserved in species as diverged as Entamoeba. We demonstrate that WASH is essential in Drosophila. WASH is widely expressed in human tissues, and human WASH protein colocalizes with actin in filopodia and lamellipodia. The VCA domain of human WASH promotes actin polymerization by the Arp2/3 complex in vitro. WASH duplicated to multiple chromosomal ends during primate evolution, with highest copy number reached in humans, whose WASH repertoires vary. Thus, human subtelomeres are not genetic junkyards, and WASH's location in these dynamic regions could have advantageous as well as pathologic consequences.