Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Med Genomics ; 15(1): 215, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224552

RESUMEN

BACKGROUND: RNA is a critical analyte for unambiguous detection of actionable mutations used to guide treatment decisions in oncology. Currently available methods for gene fusion detection include molecular or antibody-based assays, which suffer from either being limited to single-gene targeting, lack of sensitivity, or long turnaround time. The sensitivity and predictive value of next generation sequencing DNA-based assays to detect fusions by sequencing intronic regions is variable, due to the extensive size of introns. The required depth of sequencing and input nucleic acid required can be prohibitive; in addition it is not certain that predicted gene fusions are actually expressed. RESULTS: Herein we describe a method based on pyrophosphorolysis to include detection of gene fusions from RNA, with identical assay steps and conditions to detect somatic mutations in DNA [1], permitting concurrent assessment of DNA and RNA in a single instrument run. CONCLUSION: The limit of detection was under 6 molecules/ 6 µL target volume. The workflow and instrumentation required are akin to PCR assays, and the entire assay from extracted nucleic acid to sample analysis can be completed within a single day.


Asunto(s)
Fusión Génica , ARN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mutación , ARN/genética , Análisis de Secuencia de ARN
2.
Nature ; 608(7924): 724-732, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948631

RESUMEN

The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.


Asunto(s)
Linfocitos , Mutación , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Diferenciación Celular , Proliferación Celular , Microambiente Celular , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Centro Germinal/citología , Centro Germinal/inmunología , Humanos , Memoria Inmunológica/genética , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Neoplasias/genética , Neoplasias/patología
3.
Nature ; 593(7859): 405-410, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33911282

RESUMEN

Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.


Asunto(s)
Células Sanguíneas/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN/métodos , Músculo Liso/metabolismo , Mutación , Neuronas/metabolismo , Imagen Individual de Molécula/métodos , Células Madre/metabolismo , Enfermedad de Alzheimer/genética , Células Sanguíneas/citología , División Celular , Estudios de Cohortes , Colon/citología , Epitelio/metabolismo , Granulocitos/citología , Granulocitos/metabolismo , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Músculo Liso/citología , Mutagénesis , Tasa de Mutación , Neuronas/citología , Células Madre/citología
4.
Nat Commun ; 11(1): 1917, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317634

RESUMEN

The evolution and progression of multiple myeloma and its precursors over time is poorly understood. Here, we investigate the landscape and timing of mutational processes shaping multiple myeloma evolution in a large cohort of 89 whole genomes and 973 exomes. We identify eight processes, including a mutational signature caused by exposure to melphalan. Reconstructing the chronological activity of each mutational signature, we estimate that the initial transformation of a germinal center B-cell usually occurred during the first 2nd-3rd decades of life. We define four main patterns of activation-induced deaminase (AID) and apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) mutagenesis over time, including a subset of patients with evidence of prolonged AID activity during the pre-malignant phase, indicating antigen-responsiveness and germinal center reentry. Our findings provide a framework to study the etiology of multiple myeloma and explore strategies for prevention and early detection.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/etiología , Mieloma Múltiple/genética , Desaminasas APOBEC-1/metabolismo , Citidina Desaminasa/metabolismo , Análisis Mutacional de ADN , Detección Precoz del Cáncer , Exoma , Genética , Centro Germinal/patología , Humanos , Modelos Lineales , Antígenos de Histocompatibilidad Menor/metabolismo , Mutación , Proteínas/metabolismo , Edición de ARN , ARN Mensajero , Análisis de la Célula Individual
5.
Nature ; 574(7779): 532-537, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645730

RESUMEN

The colorectal adenoma-carcinoma sequence has provided a paradigmatic framework for understanding the successive somatic genetic changes and consequent clonal expansions that lead to cancer1. However, our understanding of the earliest phases of colorectal neoplastic changes-which may occur in morphologically normal tissue-is comparatively limited, as for most cancer types. Here we use whole-genome sequencing to analyse hundreds of normal crypts from 42 individuals. Signatures of multiple mutational processes were revealed; some of these were ubiquitous and continuous, whereas others were only found in some individuals, in some crypts or during certain periods of life. Probable driver mutations were present in around 1% of normal colorectal crypts in middle-aged individuals, indicating that adenomas and carcinomas are rare outcomes of a pervasive process of neoplastic change across morphologically normal colorectal epithelium. Colorectal cancers exhibit substantially increased mutational burdens relative to normal cells. Sequencing normal colorectal cells provides quantitative insights into the genomic and clonal evolution of cancer.


Asunto(s)
Colon/citología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Mutación , Síntomas Prodrómicos , Recto/citología , Adenoma/genética , Adenoma/patología , Anciano , Proteína Axina/genética , Carcinoma/genética , Carcinoma/patología , Transformación Celular Neoplásica , Células Clonales/citología , Células Clonales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Femenino , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Células Madre/citología , Células Madre/metabolismo
6.
Nature ; 561(7724): 473-478, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30185910

RESUMEN

Haematopoietic stem cells drive blood production, but their population size and lifetime dynamics have not been quantified directly in humans. Here we identified 129,582 spontaneous, genome-wide somatic mutations in 140 single-cell-derived haematopoietic stem and progenitor colonies from a healthy 59-year-old man and applied population-genetics approaches to reconstruct clonal dynamics. Cell divisions from early embryogenesis were evident in the phylogenetic tree; all blood cells were derived from a common ancestor that preceded gastrulation. The size of the stem cell population grew steadily in early life, reaching a stable plateau by adolescence. We estimate the numbers of haematopoietic stem cells that are actively making white blood cells at any one time to be in the range of 50,000-200,000. We observed adult haematopoietic stem cell clones that generate multilineage outputs, including granulocytes and B lymphocytes. Harnessing naturally occurring mutations to report the clonal architecture of an organ enables the high-resolution reconstruction of somatic cell dynamics in humans.


Asunto(s)
Células Sanguíneas/citología , Células Sanguíneas/metabolismo , Linaje de la Célula/genética , Análisis Mutacional de ADN , Mutación , Células Madre Adultas/citología , Teorema de Bayes , Recuento de Células , División Celular , Células Clonales/citología , Células Clonales/metabolismo , Desarrollo Embrionario/genética , Genoma Humano/genética , Granulocitos/citología , Granulocitos/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Masculino , Persona de Mediana Edad , Factores de Tiempo
7.
Ann Neurol ; 74(6): 862-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23929620

RESUMEN

OBJECTIVE: To develop RNA splicing biomarkers of disease severity and therapeutic response in myotonic dystrophy type 1 (DM1) and type 2 (DM2). METHODS: In a discovery cohort, we used microarrays to perform global analysis of alternative splicing in DM1 and DM2. The newly identified splicing changes were combined with previous data to create a panel of 50 putative splicing defects. In a validation cohort of 50 DM1 subjects, we measured the strength of ankle dorsiflexion (ADF) and then obtained a needle biopsy of tibialis anterior (TA) to analyze splice events in muscle RNA. The specificity of DM-associated splicing defects was assessed in disease controls. The CTG expansion size in muscle tissue was determined by Southern blot. The reversibility of splicing defects was assessed in transgenic mice by using antisense oligonucleotides to reduce levels of toxic RNA. RESULTS: Forty-two splicing defects were confirmed in TA muscle in the validation cohort. Among these, 20 events showed graded changes that correlated with ADF weakness. Five other splice events were strongly affected in DM1 subjects with normal ADF strength. Comparison to disease controls and mouse models indicated that splicing changes were DM-specific, mainly attributable to MBNL1 sequestration, and reversible in mice by targeted knockdown of toxic RNA. Splicing defects and weakness were not correlated with CTG expansion size in muscle tissue. INTERPRETATION: Alternative splicing changes in skeletal muscle may serve as biomarkers of disease severity and therapeutic response in myotonic dystrophy.


Asunto(s)
Empalme Alternativo , Distrofia Miotónica/genética , Adolescente , Adulto , Anciano , Animales , Biomarcadores , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Trastornos Miotónicos/genética , Trastornos Miotónicos/patología , Trastornos Miotónicos/fisiopatología , Distrofia Miotónica/patología , Distrofia Miotónica/fisiopatología , Oligonucleótidos Antisentido/genética , Proteínas de Unión al ARN/genética , Índice de Severidad de la Enfermedad , Adulto Joven
8.
Nucleic Acids Res ; 41(10): e112, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23580546

RESUMEN

We present an intramolecular reaction, Reflex™, to derive shorter, sequencer-ready, daughter polymerase chain reaction products from a pooled population of barcoded long-range polymerase chain reaction products, whilst still preserving the cognate DNA barcodes. Our Reflex workflow needs only a small number of primer extension steps to rapidly enable uniform sequence coverage of long contiguous sequence targets in large numbers of samples at low cost on desktop next-generation sequencers.


Asunto(s)
Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN/métodos , Citocromo P-450 CYP2D6/genética , Cartilla de ADN/química , Humanos
9.
Mol Vis ; 17: 3097-106, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22171155

RESUMEN

PURPOSE: Sex determining region Y (SRY)-box 2 (SOX2) anophthalmia syndrome is an autosomal dominant disorder manifesting as severe developmental eye malformations associated with brain, esophageal, genital, and kidney abnormalities. The syndrome is usually caused by de novo mutations or deletions in the transcription factor SOX2. To investigate any potential parental susceptibility factors, we set out to determine the parent of origin of the mutations or deletions, and following this, to determine if birth order or parental age were significant factors, as well as whether mutation susceptibility was related to any sequence variants in cis with the mutant allele. METHODS: We analyzed 23 cases of de novo disease to determine the parental origin of SOX2 mutations and deletions using informative single nucleotide polymorphisms and a molecular haplotyping approach. We examined parental ages for SOX2 mutation and deletion cases, compared these with the general population, and adjusted for birth order. RESULTS: Although the majority of subjects had mutations or deletions that arose in the paternal germline (5/7 mutation and 5/8 deletion cases), there was no significant paternal bias for new mutations (binomial test, p=0.16) or deletions (binomial test, p=0.22). For both mutation and deletion cases, there was no significant association between any single nucleotide polymorphism allele and the mutant chromosome (p>0.05). Parents of the subjects with mutations were on average older at the birth of the affected child than the general population by 3.8 years (p=0.05) for mothers and 3.3 years (p=0.66) for fathers. Parents of the subjects with deletions were on average younger than the general population by 3.0 years (p=0.17) for mothers and 2.1 years (p=0.19) for fathers. Combining these data, the difference in pattern of parental age between the subjects with deletions and mutations was evident, with a difference of 6.5 years for mothers (p=0.05) and 5.0 years for fathers (p=0.22), with the mothers and fathers of subjects with mutations being older than the mothers and fathers of subjects with deletions. We observed that 14 of the 23 (61%) affected children were the first-born child to their mother, with 10/15 of the mutation cases (66%) and 4/8 deletion cases (50%) being first born. This is in comparison to 35% of births with isolated congenital anomalies overall who are first born (p=0.008). CONCLUSIONS: Sporadic SOX2 mutations and deletions arose in both the male and female germlines. In keeping with several genetic disorders, we found that SOX2 mutations were associated with older parental age and the difference was statistically significant for mothers (p=0.05), whereas, although not statistically significant, SOX2 deletion cases had younger parents. With the current sample size, there was no evidence that sequence variants in cis surrounding SOX2 confer susceptibility to either mutations or deletions.


Asunto(s)
Anoftalmos/genética , Padres , Factores de Transcripción SOXB1/genética , Adolescente , Adulto , Inglaterra , Femenino , Humanos , Masculino , Síndrome , Gales , Adulto Joven
10.
Nucleic Acids Res ; 39(12): e81, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21490082

RESUMEN

Amplification by polymerase chain reaction is often used in the preparation of template DNA molecules for next-generation sequencing. Amplification increases the number of available molecules for sequencing but changes the representation of the template molecules in the amplified product and introduces random errors. Such changes in representation hinder applications requiring accurate quantification of template molecules, such as allele calling or estimation of microbial diversity. We present a simple method to count the number of template molecules using degenerate bases and show that it improves genotyping accuracy and removes noise from PCR amplification. This method can be easily added to existing DNA library preparation techniques and can improve the accuracy of variant calling.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN , Alelos , Biblioteca de Genes , Genotipo , Humanos , Moldes Genéticos
11.
Hum Mutat ; 31(7): 781-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20506283

RESUMEN

Bone morphogenetic protein (BMP) signaling regulates a range of cellular processes and plays an important role in the specification and patterning of the early embryo. However, due to the functional redundancy of BMP ligands and receptors in tissues where they are coexpressed, relatively little is known about the role of individual BMP ligands in human disease. Here we report heterozygous variations in BMP7, including a frameshift, missense, and Kozak sequence mutation, in individuals with developmental eye anomalies and a range of systemic abnormalities, including developmental delay, deafness, scoliosis, and cleft palate. We determined that BMP7 is expressed in the developing eye, brain, and ear in human embryos in a manner consistent with the phenotype seen in our mutation cases. These data establish BMP7 as an important gene in human eye development, and suggest that BMP7 should be considered during clinical evaluation of individuals with developmental eye anomalies.


Asunto(s)
Proteína Morfogenética Ósea 7/genética , Anomalías Congénitas/genética , Predisposición Genética a la Enfermedad , Mutación , Secuencia de Aminoácidos , Secuencia de Bases , Huesos/anomalías , Huesos/metabolismo , Encéfalo/anomalías , Encéfalo/metabolismo , Análisis Mutacional de ADN , Oído/anomalías , Enfermedades del Oído/genética , Anomalías del Ojo/genética , Hibridación in Situ , Datos de Secuencia Molecular , Hueso Paladar/anomalías , Hueso Paladar/metabolismo , Homología de Secuencia de Aminoácido
12.
Nat Struct Mol Biol ; 17(2): 187-93, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20098426

RESUMEN

The common form of myotonic dystrophy (DM1) is associated with the expression of expanded CTG DNA repeats as RNA (CUG(exp) RNA). To test whether CUG(exp) RNA creates a global splicing defect, we compared the skeletal muscle of two mouse models of DM1, one expressing a CTG(exp) transgene and another homozygous for a defective muscleblind 1 (Mbnl1) gene. Strong correlation in splicing changes for approximately 100 new Mbnl1-regulated exons indicates that loss of Mbnl1 explains >80% of the splicing pathology due to CUG(exp) RNA. In contrast, only about half of mRNA-level changes can be attributed to loss of Mbnl1, indicating that CUG(exp) RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix proteins. We propose that CUG(exp) RNA causes two separate effects: loss of Mbnl1 function (disrupting splicing) and loss of another function that disrupts extracellular matrix mRNA regulation, possibly mediated by Mbnl2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/deficiencia , Proteínas de la Matriz Extracelular/biosíntesis , Expresión Génica , Distrofia Miotónica/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Modelos Animales de Enfermedad , Ratones , Modelos Biológicos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN
13.
Hum Genet ; 126(6): 791-803, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19685247

RESUMEN

Mutations in the transcription factor encoding TFAP2A gene underlie branchio-oculo-facial syndrome (BOFS), a rare dominant disorder characterized by distinctive craniofacial, ocular, ectodermal and renal anomalies. To elucidate the range of ocular phenotypes caused by mutations in TFAP2A, we took three approaches. First, we screened a cohort of 37 highly selected individuals with severe ocular anomalies plus variable defects associated with BOFS for mutations or deletions in TFAP2A. We identified one individual with a de novo TFAP2A four amino acid deletion, a second individual with two non-synonymous variations in an alternative splice isoform TFAP2A2, and a sibling-pair with a paternally inherited whole gene deletion with variable phenotypic expression. Second, we determined that TFAP2A is expressed in the lens, neural retina, nasal process, and epithelial lining of the oral cavity and palatal shelves of human and mouse embryos--sites consistent with the phenotype observed in patients with BOFS. Third, we used zebrafish to examine how partial abrogation of the fish ortholog of TFAP2A affects the penetrance and expressivity of ocular phenotypes due to mutations in genes encoding bmp4 or tcf7l1a. In both cases, we observed synthetic, enhanced ocular phenotypes including coloboma and anophthalmia when tfap2a is knocked down in embryos with bmp4 or tcf7l1a mutations. These results reveal that mutations in TFAP2A are associated with a wide range of eye phenotypes and that hypomorphic tfap2a mutations can increase the risk of developmental defects arising from mutations at other loci.


Asunto(s)
Anomalías del Ojo/genética , Ojo/embriología , Retina/anomalías , Factor de Transcripción AP-2/genética , Adulto , Animales , Síndrome Branquio Oto Renal/genética , Preescolar , Femenino , Eliminación de Gen , Humanos , Lactante , Masculino , Persona de Mediana Edad , Morfogénesis/genética , Mutación , Pez Cebra , Proteínas de Pez Cebra/genética
14.
Hum Mutat ; 30(10): 1378-86, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19708017

RESUMEN

FOXE3 is a lens-specific transcription factor with a highly conserved forkhead domain previously implicated in congenital primary aphakia and anterior segment dysgenesis. Here, we identify new recessive FOXE3 mutations causative for microphthalmia, sclerocornea, primary aphakia, and glaucoma in two extended consanguineous families by SNP array genotyping followed by a candidate gene approach. Following an additional screen of 236 subjects with developmental eye anomalies, we report two further novel heterozygous mutations segregating in a dominant fashion in two different families. Although the dominant mutations were penetrant, they gave rise to highly variable phenotypes including iris and chorioretinal colobomas, Peters' anomaly, and isolated cataract (cerulean type and early onset adult nuclear and cortical cataract). Using in situ hybridization in human embryos, we demonstrate expression of FOXE3 restricted to lens tissue, predominantly in the anterior epithelium, suggesting that the extralenticular phenotypes caused by FOXE3 mutations are most likely to be secondary to abnormal lens formation. Our findings suggest that mutations in FOXE3 can give rise to a broad spectrum of eye anomalies, largely, but not exclusively related to lens development, and that both dominant and recessive inheritance patterns can be represented. We suggest including FOXE3 in the diagnostic genetic screening for these anomalies.


Asunto(s)
Anomalías del Ojo/genética , Factores de Transcripción Forkhead/genética , Genes Dominantes , Genes Recesivos , Secuencia de Bases , Cartilla de ADN , Femenino , Factores de Transcripción Forkhead/química , Genotipo , Humanos , Hibridación in Situ , Masculino , Mutación , Linaje , Polimorfismo de Nucleótido Simple
15.
Science ; 325(5938): 336-9, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19608921

RESUMEN

Genomic expansions of simple tandem repeats can give rise to toxic RNAs that contain expanded repeats. In myotonic dystrophy, the expression of expanded CUG repeats (CUGexp) causes abnormal regulation of alternative splicing and neuromuscular dysfunction. We used a transgenic mouse model to show that derangements of myotonic dystrophy are reversed by a morpholino antisense oligonucleotide, CAG25, that binds to CUGexp RNA and blocks its interaction with muscleblind-like 1 (MBNL1), a CUGexp-binding protein. CAG25 disperses nuclear foci of CUGexp RNA and reduces the overall burden of this toxic RNA. As MBNL1 is released from sequestration, the defect of alternative splicing regulation is corrected, thereby restoring ion channel function. These findings suggest an alternative use of antisense methods, to inhibit deleterious interactions of proteins with pathogenic RNAs.


Asunto(s)
Regiones no Traducidas 3'/metabolismo , Proteínas de Unión al ADN/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Oligodesoxirribonucleótidos Antisentido/farmacología , Proteínas de Unión al ARN/metabolismo , Expansión de Repetición de Trinucleótido , Regiones no Traducidas 3'/genética , Actinas/genética , Empalme Alternativo , Animales , Línea Celular , Núcleo Celular/metabolismo , Canales de Cloruro/metabolismo , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica , Oligodesoxirribonucleótidos Antisentido/uso terapéutico , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Transcripción Genética
16.
Hum Mol Genet ; 18(8): 1471-81, 2009 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-19223393

RESUMEN

Myotonic dystrophy type 1 (DM1) is an RNA dominant disease in which mutant transcripts containing an expanded CUG repeat (CUG(exp)) cause muscle dysfunction by interfering with biogenesis of other mRNAs. The toxic effects of mutant RNA are mediated partly through sequestration of splicing regulator Muscleblind-like 1 (Mbnl1), a protein that binds to CUG(exp) RNA. A gene that is prominently affected encodes chloride channel 1 (Clcn1), resulting in hyperexcitability of muscle (myotonia). To identify DM1-affected genes and study mechanisms for dysregulation, we performed global mRNA profiling in transgenic mice that express CUG(exp) RNA, when compared with Mbnl1 knockout and Clcn1 null mice. We found that the majority of changes induced by CUG(exp) RNA in skeletal muscle can be explained by reduced activity of Mbnl1, including many changes that are secondary to myotonia. The pathway most affected comprises genes involved in calcium signaling and homeostasis. Some effects of CUG(exp) RNA on gene expression are caused by abnormal alternative splicing or downregulation of Mbnl1-interacting mRNAs. However, several of the most highly dysregulated genes showed altered transcription, as indicated by parallel changes of the corresponding pre-mRNAs. These results support the idea that trans-dominant effects of CUG(exp) RNA on gene expression in this transgenic model may occur at the level of transcription, RNA processing and mRNA decay, and are mediated mainly but not entirely through sequestration of Mbnl1.


Asunto(s)
Regulación de la Expresión Génica , Distrofia Miotónica/genética , ARN/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Canales de Cloruro/genética , Proteínas de Unión al ADN/genética , Ratones , Ratones Transgénicos , Músculo Esquelético , ARN/genética , Empalme del ARN , Estabilidad del ARN , Proteínas de Unión al ARN/genética
17.
Hum Mutat ; 29(11): E278-83, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18781617

RESUMEN

Severe ocular malformations, including anophthalmia-microphthalmia (AM), are responsible for around 25% of severe visual impairment in childhood. Recurrent interstitial deletions of 14q22-23 are associated with AM and a wide range of extra-ocular phenotypes including brain anomalies. The homeobox gene OTX2 is located at 14q22.3 and has recently been identified as mutated in AM patients. Eight human OTX2 mutations have been reported in subjects with severe eye malformations, including AM, and variable developmental delay. We screened a novel AM cohort for mutations and deletions in OTX2, and identified four new mutations in six individuals and two cases of whole gene deletions. Our data suggest that OTX2 mutations and deletions account for 2-3% of AM cases.


Asunto(s)
Anoftalmos/genética , Coloboma/genética , Eliminación de Gen , Microftalmía/genética , Factores de Transcripción Otx/genética , Adolescente , Niño , Preescolar , Cromosomas Humanos Par 14 , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Discapacidades del Desarrollo/genética , Femenino , Heterocigoto , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Linaje , Fenotipo
18.
Nucleic Acids Res ; 36(4): e24, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18263610

RESUMEN

We describe conditions for producing uninterrupted expanded CTG repeats consisting of up to 2000 repeats using 29 DNA polymerase. Previously, generation of such repeats was hindered by CTG repeat instability in plasmid vectors maintained in Escherichia coli and poor in vitro ligation of CTG repeat concatemers due to strand slippage. Instead, we used a combination of in vitro ligation and 29 DNA polymerase to amplify DNA. Correctly ligated products generating a dimerized repeat tract formed substrates for rolling circle amplification (RCA). In the presence of two non-complementary primers, hybridizing to either strand of DNA, ligations can be amplified to generate microgram quantities of repeat containing DNA. Additionally, expanded repeats generated by rolling circle amplification can be produced in vectors for expression of expanded CUG (CUG(exp)) RNA capable of sequestering MBNL1 protein in cell culture. Amplification of dimerized expanded repeats (ADER) opens new possibilities for studies of repeat instability and pathogenesis in myotonic dystrophy, a neurological disorder caused by an expanded CTG repeat.


Asunto(s)
Clonación Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico , Expansión de Repetición de Trinucleótido , Fagos de Bacillus/enzimología , Línea Celular , Sistema Libre de Células , ADN Polimerasa Dirigida por ADN , Dimerización , Humanos , Proteína Quinasa de Distrofia Miotónica , Plásmidos/genética , Proteínas Serina-Treonina Quinasas/genética
19.
Am J Physiol Cell Physiol ; 292(4): C1291-7, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17135300

RESUMEN

Transmembrane chloride ion conductance in skeletal muscle increases during early postnatal development. A transgenic mouse model of myotonic dystrophy type 1 (DM1) displays decreased sarcolemmal chloride conductance. Both effects result from modulation of chloride channel 1 (CLCN1) expression, but the respective contributions of transcriptional vs. posttranscriptional regulation are unknown. Here we show that alternative splicing of CLCN1 undergoes a physiological splicing transition during the first 3 wk of postnatal life in mice. During this interval, there is a switch to production of CLCN1 splice products having an intact reading frame, an upregulation of CLCN1 mRNA encoding full-length channel protein, and an increase of CLCN1 function, as determined by patch-clamp analysis of single muscle fibers. In a transgenic mouse model of DM1, however, the splicing transition does not occur, CLCN1 channel function remains low throughout the postnatal interval, and muscle fibers display myotonic discharges. Thus alternative splicing is a posttranscriptional mechanism regulating chloride conductance during muscle development, and the chloride channelopathy in a transgenic mouse model of DM1 results from a failure to execute a splicing transition for CLCN1.


Asunto(s)
Canalopatías/metabolismo , Canales de Cloruro/fisiología , Músculo Esquelético/metabolismo , Distrofia Miotónica/metabolismo , Procesamiento Postranscripcional del ARN , Empalme Alternativo , Animales , Canalopatías/genética , Canales de Cloruro/biosíntesis , Canales de Cloruro/genética , Técnicas In Vitro , Activación del Canal Iónico , Ratones , Ratones Transgénicos , Desarrollo de Músculos , Fibras Musculares Esqueléticas/fisiología , Músculo Esquelético/crecimiento & desarrollo , Distrofia Miotónica/genética , Técnicas de Placa-Clamp , Isoformas de Proteínas/biosíntesis , ARN Mensajero/biosíntesis
20.
Hum Mol Genet ; 15 Spec No 2: R162-9, 2006 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16987879

RESUMEN

Several examples have come to light in which mutations in non-protein-coding regions give rise to a deleterious gain-of-function by non-coding RNA. Expression of the toxic RNA is associated with formation of nuclear inclusions and late-onset degenerative changes in brain, heart or skeletal muscle. In the best studied example, myotonic dystrophy, it appears that the main pathogenic effect of the toxic RNA is to sequester binding proteins and compromise the regulation of alternative splicing. This review describes some of the recent advances in understanding the pathophysiology of RNA-dominant diseases.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , ARN no Traducido/genética , Empalme Alternativo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/fisiopatología , Enfermedades Genéticas Congénitas/fisiopatología , Humanos , Proteína Huntingtina , Modelos Genéticos , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Fenotipo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/fisiopatología , Expansión de Repetición de Trinucleótido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...