Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Bioconjug Chem ; 35(4): 457-464, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38548654

RESUMEN

Antibody-drug conjugates (ADCs) have emerged as a powerful class of anticancer therapeutics that enable the selective delivery of toxic payloads into target cells. There is increasing appreciation for the importance of synthesizing such ADCs in a defined manner where the payload is attached at specific permissive sites on the antibody with a defined drug to antibody ratio. Additionally, the ability to systematically alter the site of attachment is important to fine-tune the therapeutic properties of the ADC. Engineered cysteine residues have been used to achieve such site-specific programmable attachment of drug molecules onto antibodies. However, engineered cysteine residues on antibodies often get "disulfide-capped" during secretion and require reductive regeneration prior to conjugation. This reductive step also reduces structurally important disulfide bonds in the antibody itself, which must be regenerated through oxidation. This multistep, cumbersome process reduces the efficiency of conjugation and presents logistical challenges. Additionally, certain engineered cysteine sites are resistant to reductive regeneration, limiting their utility and the overall scope of this conjugation strategy. In this work, we utilize a genetically encoded photocaged cysteine residue that can be site-specifically installed into the antibody. This photocaged amino acid can be efficiently decaged using light, revealing a free cysteine residue available for conjugation without disrupting the antibody structure. We show that this ncAA can be incorporated at several positions within full-length recombinant trastuzumab and decaged efficiently. We further used this method to generate a functional ADC site-specifically modified with monomethyl auristatin F (MMAF).


Asunto(s)
Antineoplásicos , Inmunoconjugados , Cisteína/química , Antineoplásicos/química , Compuestos de Sulfhidrilo , Anticuerpos/química , Inmunoconjugados/química , Disulfuros
2.
Angew Chem Int Ed Engl ; 62(19): e202219269, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36905325

RESUMEN

Site-specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into proteins in mammalian cells is a promising technology, where each ncAA must be assigned to a different orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pair that reads a distinct nonsense codon. Available pairs suppress TGA or TAA codons at a considerably lower efficiency than TAG, limiting the scope of this technology. Here we show that the E. coli tryptophanyl (EcTrp) pair is an excellent TGA-suppressor in mammalian cells, which can be combined with the three other established pairs to develop three new routes for dual-ncAA incorporation. Using these platforms, we site-specifically incorporated two different bioconjugation handles into an antibody with excellent efficiency, and subsequently labeled it with two distinct cytotoxic payloads. Additionally, we combined the EcTrp pair with other pairs to site-specifically incorporate three distinct ncAAs into a reporter protein in mammalian cells.


Asunto(s)
Aminoácidos , Aminoacil-ARNt Sintetasas , Aminoácidos/química , Aminoacil-ARNt Sintetasas/metabolismo , Codón sin Sentido/metabolismo , Codón de Terminación , Escherichia coli/genética , Escherichia coli/metabolismo , ARN de Transferencia/química , Animales
3.
ACS Cent Sci ; 8(4): 483-492, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35559426

RESUMEN

The Escherichia coli tyrosyl-tRNA synthetase (EcTyrRS)/tRNAEcTyr pair offers an attractive platform for genetically encoding new noncanonical amino acids (ncAA) in eukaryotes. However, challenges associated with a eukaryotic selection system, which is needed to engineer the platform, have impeded its success in the past. Recently, using a facile E. coli-based selection system, we showed that EcTyrRS could be engineered in a strain where the endogenous tyrosyl pair was substituted with an archaeal counterpart. However, significant cross-reactivity between the UAG-suppressing tRNACUA EcTyr and the bacterial glutaminyl-tRNA synthetase limited the scope of this strategy, preventing the selection of moderately active EcTyrRS mutants. Here we report an engineered tRNACUA EcTyr that overcomes this cross-reactivity. Optimized selection systems based on this tRNA enabled the efficient enrichment of both strongly and weakly active ncAA-selective EcTyrRS mutants. We also developed a wide dynamic range (WiDR) antibiotic selection to further enhance the activities of the weaker first-generation EcTyrRS mutants. We demonstrated the utility of our platform by developing several new EcTyrRS mutants that efficiently incorporated useful ncAAs in mammalian cells, including photoaffinity probes, bioconjugation handles, and a nonhydrolyzable mimic of phosphotyrosine.

4.
Curr Opin Struct Biol ; 74: 102352, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35334254

RESUMEN

In living systems, the chemical space and functional repertoire of proteins are dramatically expanded through the post-translational modification (PTM) of various amino acid residues. These modifications frequently trigger unique protein-protein interactions (PPIs) - for example with reader proteins that directly bind the modified amino acid residue - which leads to downstream functional outcomes. The modification of a protein can also perturb its PPI network indirectly, for example, through altering its conformation or subcellular localization. Uncovering the network of unique PTM-triggered PPIs is essential to fully understand the roles of an ever-expanding list of PTMs in our biology. In this review, we discuss established strategies and current challenges associated with this endeavor.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas , Aminoácidos/metabolismo , Proteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...