Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 206(5): e0007124, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38629875

RESUMEN

Bovine mastitis is a frequent infection in lactating cattle, causing great economic losses. Staphylococcus aureus represents the main etiological agent, which causes recurrent and persistent intramammary infections because conventional antibiotics are ineffective against it. Mastoparan-like peptides are multifunctional molecules with broad antimicrobial potential, constituting an attractive alternative. Nevertheless, their toxicity to host cells has hindered their therapeutic application. Previously, our group engineered three mastoparan-L analogs, namely mastoparan-MO, mastoparan-R1, and [I5, R8] MP, to improve cell selectivity and potential. Here, we were interested in comparing the antibacterial efficacy of mastoparan-L and its analogs against bovine mastitis isolates of S. aureus strains, making a correlation with the physicochemical properties and structural arrangement changes promoted by the sequence modifications. As a result, the analog's hemolytic and/or antimicrobial activity was balanced. All the peptides displayed α-helical folding in hydrophobic and membrane-mimetic environments, as determined by circular dichroism. The peptide [I5, R8] MP stood out for its enhanced selectivity and antibacterial features related to mastoparan-L and the other derivatives. Biophysical approaches revealed that [I5, R8] MP rapidly depolarizes the bacterial membrane of S. aureus, causing cell death by subsequent membrane disruption. Our results demonstrated that the [I5, R8] MP peptide could be a starting point for the development of peptide-based drugs for the treatment of bovine mastitis, with the advantage of no residue in milk, which would help reduce the use of classical antibiotics.IMPORTANCEStaphylococcus aureus is a leading cause of mastitis, the world's most important dairy cattle disease. The multidrug resistance and zoonotic potential of S. aureus, besides the likelihood of antibiotic residues in milk, are of critical concern to public and animal health. Antimicrobial peptides offer a novel antimicrobial strategy. Here, we demonstrate that [I5, R8] MP is a potent and selective peptide, which acts on S. aureus by targeting the bacterial membrane. Therefore, understanding the physicochemical determinants and the modes of action of this class of antimicrobials opens novel prospects for peptide development with enhanced activities in the bovine mastitis context.


Asunto(s)
Antibacterianos , Péptidos y Proteínas de Señalización Intercelular , Mastitis Bovina , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Bovinos , Mastitis Bovina/microbiología , Mastitis Bovina/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Femenino , Antibacterianos/farmacología , Antibacterianos/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/tratamiento farmacológico , Péptidos/farmacología , Péptidos/química , Venenos de Avispas/farmacología , Venenos de Avispas/química
2.
FEBS J ; 291(5): 865-883, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37997610

RESUMEN

Mastoparans are cationic peptides with multifunctional pharmacological properties. Mastoparan-R1 and mastoparan-R4 were computationally designed based on native mastoparan-L from wasps and have improved therapeutic potential for the control of bacterial infections. Here, we evaluated whether these peptides maintain their activity against Escherichia coli strains under a range of salt concentrations. We found that mastoparan-R1 and mastoparan-R4 preserved their activity under the conditions tested, including having antibacterial activities at physiological salt concentrations. The overall structure of the peptides was investigated using circular dichroism spectroscopy in a range of solvents. No significant changes in secondary structure were observed (random coil in aqueous solutions and α-helix in hydrophobic and anionic environments). The three-dimensional structures of mastoparan-R1 and mastoparan-R4 were elucidated through nuclear magnetic resonance spectroscopy, revealing amphipathic α-helical segments for Leu3-Ile13 (mastoparan-R1) and Leu3-Ile14 (mastoparan-R4). Possible membrane-association mechanisms for mastoparan-R1 and mastoparan-R4 were investigated through surface plasmon resonance and leakage studies with synthetic POPC and POPC/POPG (4:1) lipid bilayers. Mastoparan-L had the highest affinity for both membrane systems, whereas the two analogs had weaker association, but improved selectivity for lysing anionic membranes. This finding was also supported by molecular dynamics simulations, in which mastoparan-R1 and mastoparan-R4 were found to have greater interactions with bacteria-like membranes compared with model mammalian membranes. Despite having a few differences in their functional and structural profiles, the mastoparan-R1 analog stood out with the highest activity, greater bacteriostatic potential, and selectivity for lysing anionic membranes. This study reinforces the potential of mastoparan-R1 as a drug candidate.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Péptidos , Animales , Péptidos/farmacología , Venenos de Avispas/farmacología , Escherichia coli , Cloruro de Sodio , Computadores , Mamíferos
3.
Chem Sci ; 13(32): 9410-9424, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36093022

RESUMEN

Structural diversity drives multiple biological activities and mechanisms of action in linear peptides. Here we describe an unusual N-capping asparagine-lysine-proline (NKP) motif that confers a hybrid multifunctional scaffold to a computationally designed peptide (PaDBS1R7). PaDBS1R7 has a shorter α-helix segment than other computationally designed peptides of similar sequence but with key residue substitutions. Although this motif acts as an α-helix breaker in PaDBS1R7, the Asn5 presents exclusive N-capping effects, forming a belt to establish hydrogen bonds for an amphipathic α-helix stabilization. The combination of these different structural profiles was described as a coil/N-cap/α-helix scaffold, which was also observed in diverse computational peptide mutants. Biological studies revealed that all peptides displayed antibacterial activities. However, only PaDBS1R7 displayed anticancer properties, eradicated Pseudomonas aeruginosa biofilms, decreased bacterial counts by 100-1000-fold in vivo, reduced lipopolysaccharide-induced macrophages stress, and stimulated fibroblast migration for wound healing. This study extends our understanding of an N-capping NKP motif to engineering hybrid multifunctional peptide drug candidates with potent anti-infective and immunomodulatory properties.

4.
Chem Commun (Camb) ; 57(88): 11578-11590, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34652348

RESUMEN

Antimicrobial peptides (AMPs) are pinpointed as promising molecules against antibiotic-resistant bacterial infections. Nevertheless, there is a discrepancy between the AMP sequences generated and the tangible outcomes in clinical trials. AMPs' limitations include enzymatic degradation, chemical/physical instability and toxicity toward healthy human cells. These factors compromise AMPs' bioavailability, resulting in limited therapeutic potential. To overcome such obstacles, peptidomimetic approaches, including glycosylation, PEGylation, lipidation, cyclization, grafting, D-amino acid insertion, stapling and dendrimers are promising strategies to fine-tune AMPs. Here we focused on chemical modifications applied for AMP optimization and how they have helped these peptide-based antibiotic candidates' design and translational potential.


Asunto(s)
Antibacterianos/síntesis química , Péptidos Antimicrobianos/química , Antibacterianos/química , Humanos , Modelos Moleculares
5.
J Antimicrob Chemother ; 76(5): 1174-1186, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33501992

RESUMEN

OBJECTIVES: The number of bacterial pathogens resistant to the currently available antibiotics has dramatically increased, with antimicrobial peptides (AMPs) being among the most promising potential new drugs. In this study, the applicability and mechanisms of action of Pa-MAP 2 and Pa-MAP 1.9, two AMPs synthetically designed based on a natural AMP template, were evaluated. METHODS: Pa-MAP 2 and Pa-MAP 1.9 were tested against a clinically isolated multidrug-resistant (MDR) Escherichia coli strain. Biophysical approaches were used to evaluate the preference of both peptides for specific lipid membranes, and bacterial surface changes imaged by atomic force microscopy (AFM). The efficacy of both peptides was assessed both in vitro and in vivo. RESULTS: Experimental results showed that both peptides have antimicrobial activity against the E. coli MDR strain. Zeta potential and surface plasmon resonance assays showed that they interact extensively with negatively charged membranes, changing from a random coil structure, when free in solution, to an α-helical structure after membrane interaction. The antibacterial efficacy was evaluated in vitro, by several techniques, and in vivo, using a wound infection model, showing a concentration-dependent antibacterial effect. Different membrane properties were evaluated to understand the mechanism underlying peptide action, showing that both promote destabilization of the bacterial surface, as imaged by AFM, and change properties such as membrane surface and dipole potential. CONCLUSIONS: Despite their similarity, data indicate that the mechanisms of action of the peptides are different, with Pa-MAP 1.9 being more effective than Pa-MAP 2. These results highlight their potential use as antimicrobial agents against MDR bacteria.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Escherichia coli , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Péptidos
6.
Front Microbiol ; 10: 2169, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681179

RESUMEN

Infections caused by invasive fungal biofilms have been widely associated with high morbidity and mortality rates, mainly due to the advent of antibiotic resistance. Moreover, fungal biofilms impose an additional challenge, leading to multidrug resistance. This fact, along with the contamination of medical devices and the limited number of effective antifungal agents available on the market, demonstrates the importance of finding novel drug candidates targeting pathogenic fungal cells and biofilms. In this context, an alternative strategy is the use of antifungal peptides (AFPs) against fungal biofilms. AFPs are considered a group of bioactive molecules with broad-spectrum activities and multiple mechanisms of action that have been widely used as template molecules for drug design strategies aiming at greater specificity and biological efficacy. Among the AFP classes most studied in the context of fungal biofilms, defensins, cathelicidins and histatins have been described. AFPs can also act by preventing the formation of fungal biofilms and eradicating preformed biofilms through mechanisms associated with cell wall perturbation, inhibition of planktonic fungal cells' adhesion onto surfaces, gene regulation and generation of reactive oxygen species (ROS). Thus, considering the critical scenario imposed by fungal biofilms and associated infections and the application of AFPs as a possible treatment, this review will focus on the most effective AFPs described to date, with a core focus on antibiofilm peptides, as well as their efficacy in vivo, application on surfaces and proposed mechanisms of action.

7.
Int J Mol Sci ; 20(19)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581426

RESUMEN

The advent of multidrug resistance among pathogenic bacteria has attracted great attention worldwide. As a response to this growing challenge, diverse studies have focused on the development of novel anti-infective therapies, including antimicrobial peptides (AMPs). The biological properties of this class of antimicrobials have been thoroughly investigated, and membranolytic activities are the most reported mechanisms by which AMPs kill bacteria. Nevertheless, an increasing number of works have pointed to a different direction, in which AMPs are seen to be capable of displaying non-lytic modes of action by internalizing bacterial cells. In this context, this review focused on the description of the in vitro and in vivo antibacterial and antibiofilm activities of non-lytic AMPs, including indolicidin, buforin II PR-39, bactenecins, apidaecin, and drosocin, also shedding light on how AMPs interact with and further translocate through bacterial membranes to act on intracellular targets, including DNA, RNA, cell wall and protein synthesis.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Bacterias/metabolismo , Glicopéptidos/metabolismo , Insectos , Biosíntesis de Proteínas
8.
J Med Chem ; 62(17): 8140-8151, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31411881

RESUMEN

Diverse peptides have been evaluated for their activity against pathogenic microorganisms. Here, five mastoparan variants were designed based on mastoparan-L, among which two (R1 and R4) were selected for in-depth analysis. Mastoparan-L (parent/control), R1, and R4 inhibited susceptible/resistant bacteria at concentrations ranging from 2 to 32 µM, whereas only R1 and R4 eradicated Pseudomonas aeruginosa biofilms at 16 µM. Moreover, the toxic effects of mastoparan-L toward mammalian cells were drastically reduced in both variants. In skin infections, R1 at 64 µM was the most effective variant, reducing P. aeruginosa bacterial counts 1000 times on day 4 post-infection. Structurally, all of the peptides showed varying levels of helicity and structural stability in aqueous and membrane-like conditions, which may affect the different bioactivities observed here. By computationally modifying the physicochemical properties of R1 and R4, we reduced the cytotoxicity and optimized the therapeutic potential of these mastoparan-like peptides both in vitro and in vivo.


Asunto(s)
Antibacterianos/farmacología , Diseño Asistido por Computadora , Péptidos y Proteínas de Señalización Intercelular/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Venenos de Avispas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Péptidos y Proteínas de Señalización Intercelular/síntesis química , Péptidos y Proteínas de Señalización Intercelular/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Venenos de Avispas/síntesis química , Venenos de Avispas/química
9.
ACS Infect Dis ; 5(7): 1081-1086, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31016969

RESUMEN

Bacterial biofilms and associated infections represent one of the biggest challenges in the clinic, and as an alternative to counter bacterial infections, antimicrobial peptides have attracted great attention in the past decade. Here, ten short cationic antimicrobial peptides were generated through a sliding-window strategy on the basis of the 19-amino acid residue peptide, derived from a Pyrobaculum aerophilum ribosomal protein. PaDBS1R6F10 exhibited anti-infective potential as it decreased the bacterial burden in murine Pseudomonas aeruginosa cutaneous infections by more than 1000-fold. Adverse cytotoxic and hemolytic effects were not detected against mammalian cells. The peptide demonstrated structural plasticity in terms of its secondary structure in the different environments tested. PaDBS1R6F10 represents a promising antimicrobial agent against bacteria infections, without harming human cells.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Pyrobaculum/metabolismo , Proteínas Ribosómicas/química , Secuencia de Aminoácidos , Animales , Péptidos Catiónicos Antimicrobianos/química , Proteínas Arqueales/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Modelos Animales de Enfermedad , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/fisiología
10.
Front Microbiol ; 10: 3097, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038544

RESUMEN

Antimicrobial peptides (AMPs), especially antibacterial peptides, have been widely investigated as potential alternatives to antibiotic-based therapies. Indeed, naturally occurring and synthetic AMPs have shown promising results against a series of clinically relevant bacteria. Even so, this class of antimicrobials has continuously failed clinical trials at some point, highlighting the importance of AMP optimization. In this context, the computer-aided design of AMPs has put together crucial information on chemical parameters and bioactivities in AMP sequences, thus providing modes of prediction to evaluate the antibacterial potential of a candidate sequence before synthesis. Quantitative structure-activity relationship (QSAR) computational models, for instance, have greatly contributed to AMP sequence optimization aimed at improved biological activities. In addition to machine-learning methods, the de novo design, linguistic model, pattern insertion methods, and genetic algorithms, have shown the potential to boost the automated design of AMPs. However, how successful have these approaches been in generating effective antibacterial drug candidates? Bearing this in mind, this review will focus on the main computational strategies that have generated AMPs with promising activities against pathogenic bacteria, as well as anti-infective potential in different animal models, including sepsis and cutaneous infections. Moreover, we will point out recent studies on the computer-aided design of antibiofilm peptides. As expected from automated design strategies, diverse candidate sequences with different structural arrangements have been generated and deposited in databases. We will, therefore, also discuss the structural diversity that has been engendered.

11.
Commun Biol ; 1: 221, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534613

RESUMEN

Antimicrobial peptides (AMPs) constitute promising alternatives to classical antibiotics for the treatment of drug-resistant infections, which are a rapidly emerging global health challenge. However, our understanding of the structure-function relationships of AMPs is limited, and we are just beginning to rationally engineer peptides in order to develop them as therapeutics. Here, we leverage a physicochemical-guided peptide design strategy to identify specific functional hotspots in the wasp-derived AMP polybia-CP and turn this toxic peptide into a viable antimicrobial. Helical fraction, hydrophobicity, and hydrophobic moment are identified as key structural and physicochemical determinants of antimicrobial activity, utilized in combination with rational engineering to generate synthetic AMPs with therapeutic activity in a mouse model. We demonstrate that, by tuning these physicochemical parameters, it is possible to design nontoxic synthetic peptides with enhanced sub-micromolar antimicrobial potency in vitro and anti-infective activity in vivo. We present a physicochemical-guided rational design strategy to generate peptide antibiotics.

12.
ACS Infect Dis ; 4(12): 1727-1736, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30346140

RESUMEN

Computer-aided screening of antimicrobial peptides (AMPs) is a promising approach for discovering novel therapies against multidrug-resistant bacterial infections. Here, we functionally and structurally characterized an Escherichia coli-derived AMP (EcDBS1R5) previously designed through pattern identification [α-helical set (KK[ILV](3)[AILV])], followed by sequence optimization. EcDBS1R5 inhibited the growth of Gram-negative and Gram-positive, susceptible and resistant bacterial strains at low doses (2-32 µM), with no cytotoxicity observed against non-cancerous and cancerous cell lines in the concentration range analyzed (<100 µM). Furthermore, EcDBS1R5 (16 µM) acted on Pseudomonas aeruginosa pre-formed biofilms by compromising the viability of biofilm-constituting cells. The in vivo antibacterial potential of EcDBS1R5 was confirmed as the peptide reduced bacterial counts by two-logs 2 days post-infection using a skin scarification mouse model. Structurally, circular dichroism analysis revealed that EcDBS1R5 is unstructured in hydrophilic environments, but has strong helicity in 2,2,2-trifluoroethanol (TFE)/water mixtures (v/v) and sodium dodecyl sulfate (SDS) micelles. The TFE-induced nuclear magnetic resonance structure of EcDBS1R5 was determined and showed an amphipathic helical segment with flexible termini. Moreover, we observed that the amide protons for residues Met2-Ala8, Arg10, Ala13-Ala16, and Trp19 in EcDBS1R5 are protected from the solvent, as their temperature coefficients values are more positive than -4.6 ppb·K-1. In summary, this study reports a novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Biopelículas/efectos de los fármacos , Escherichia coli/química , Infecciones por Pseudomonas/tratamiento farmacológico , Animales , Dicroismo Circular , Diseño Asistido por Computadora , Diseño de Fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
13.
Adv Protein Chem Struct Biol ; 112: 359-384, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29680241

RESUMEN

Antimicrobial peptides (AMPs) have been widely isolated from most organisms in nature. This class of antimicrobials may undergo changes in their sequence for improved physicochemical properties, including charge, hydrophobicity, and hydrophobic moment. It is known that such properties may be directly associated with AMPs' structural arrangements and, consequently, could interfere in their modes of action against microorganisms. In this scenario, biophysical methodologies, such as nuclear magnetic resonance spectroscopy, X-ray crystallography, and cryo-electron microscopy, allied to in silico approaches, including molecular modeling, docking, and dynamics nowadays represent an enormous first step for the structural elucidation of AMPs, leading to further structure-function annotation. In this context, this chapter will focus on the main atomic-level experimental and computational tools used for the structural elucidation of AMPs that have assisted in the investigation of their functions.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
14.
Front Microbiol ; 7: 2136, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119671

RESUMEN

Bacterial resistance is a major threat to plant crops, animals and human health, and over the years this situation has increasingly spread worldwide. Due to their many bioactive compounds, plants are promising sources of antimicrobial compounds that can potentially be used in the treatment of infections caused by microorganisms. As well as stem, flowers and leaves, fruits have an efficient defense mechanism against pests and pathogens, besides presenting nutritional and functional properties due to their multifunctional molecules. Among such compounds, the antimicrobial peptides (AMPs) feature different antimicrobials that are capable of disrupting the microbial membrane and of acting in binding to intra-cytoplasmic targets of microorganisms. They are therefore capable of controlling or halting the growth of microorganisms. In summary, this review describes the major classes of AMPs found in fruits, their possible use as biotechnological tools and prospects for the pharmaceutical industry and agribusiness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA