Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Small Methods ; : e2400765, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367554

RESUMEN

Fourier ptychography (FP) is a high resolution wide-field imaging method based on the extended aperture in the Fourier space, which is synthesized from raw images with varying illumination angles. If FP is extended to coherent nonlinear optical imaging, the resolution could be further improved due to the increase of the cutoff frequency of the synthesized coherent optical transfer function (C-OTF) with respect to the order of nonlinear optical processes. However, there is a fundamental conflict between wide-field FP and nonlinear optical imaging, whereby the nonlinear optical imaging typically requires a focused excitation laser beam with high power density. To tackle the problem, in this work, a unique point-scanning FP (PS-FP) method is presented for super-resolution nonlinear optical imaging, in which the nonlinear optical signal is obtained by using focused laser beam, while the conventional FP algorithm can still be used to retrieve the super-resolution image. PS-FP coherent anti-Stokes Raman scattering (PS-FP-CARS) imaging on a variety of samples, where a 1.8-fold expansion of the OTF is achieved experimentally for enhancing vibrational imaging. Further theoretical calculation shows that the C-OTF of PS-FP higher-order CARS (PS-FP-HO-CARS) can be expanded up to ≈4.9-fold, thereby improving the spatial resolution by ≈3-fold in comparison with conventional point-scanning CARS with under tightly focused beams. The generality of PS-FP method developed in this work can be adapted to other coherent nonlinear optical imaging modalities for super-resolution imaging in tissue and cells.

2.
Ultramicroscopy ; 253: 113812, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37515932

RESUMEN

The spatial resolution plays a crucial role in determining the performance of a nuclear microprobe. However, the formation of spatial resolutions below 10 nm remains a challenge in nuclear microprobes. Here, we propose novel technologies (near-axis scanning transmission ion microscopy and double-fragment scattering) utilizing molecular ions to address this challenge and demonstrate a H2+ molecular beam with 6.0 × 10 nm2 lateral resolution and monolayer thickness resolution respectively. Using the improved nuclear microprobe, we directly demonstrate that the ionization of a H2+ can be efficiently achieved using one single layer graphene, and also that single and few layers of freestanding graphene can be clearly differentiated and identified. The precise control of fast molecular ions at sub-10 nm scales has the potential to unlock new avenues of applications.

3.
Nat Commun ; 12(1): 4657, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341359

RESUMEN

Correlative imaging and quantification of intracellular nanoparticles with the underlying ultrastructure is crucial for understanding cell-nanoparticle interactions in biological research. However, correlative nanoscale imaging of whole cells still remains a daunting challenge. Here, we report a straightforward nanoscopic approach for whole-cell correlative imaging, by simultaneous ionoluminescence and ultrastructure mapping implemented with a highly focused beam of alpha particles. We demonstrate that fluorescent nanodiamonds exhibit fast, ultrabright and stable emission upon excitation by alpha particles. Thus, by using fluorescent nanodiamonds as imaging probes, our approach enables quantification and correlative localization of single nanodiamonds within a whole cell at sub-30 nm resolution. As an application example, we show that our approach, together with Monte Carlo simulations and radiobiological experiments, can be employed to provide unique insights into the mechanisms of nanodiamond radiosensitization at the single whole-cell level. These findings may benefit clinical studies of radio-enhancement effects by nanoparticles in charged-particle cancer therapy.


Asunto(s)
Partículas alfa , Núcleo Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Histonas/metabolismo , Nanodiamantes/efectos de la radiación , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células HeLa , Células Hep G2 , Humanos , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo/métodos , Nanodiamantes/química , Nanodiamantes/ultraestructura , Fosforilación/efectos de la radiación
4.
Phys Med ; 76: 277-284, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32738775

RESUMEN

There is an increasing number of radiobiological experiments being conducted with low energy protons (less than 5 MeV) for radiobiological studies due to availability of sub-millimetre focused beam. However, low energy proton has broad microdosimetric spectra which can introduce dosimetric uncertainty. In this work, we quantify the impact of this dosimetric uncertainties on the cell survival curve and how it affects the estimation of the alpha and beta parameters in the LQ formalism. Monte Carlo simulation is used to generate the microdosimetric spectra in a micrometer-sized water sphere under proton irradiation. This is modelled using radiobiological experiment set-up at the Centre of Ion Beam Application (CIBA) in National University of Singapore. Our results show that the microdosimetric spectra can introduce both systematic and random shifts in dose and cell survival; this effect is most pronounced with low energy protons. The alpha and beta uncertainties can be up to 10% and above 30%, respectively for low energy protons passing through thin cell target (about 10 microns). These uncertainties are non-negligible and show that care must be taken in using the cell survival curve and its derived parameters for radiobiological models.


Asunto(s)
Terapia de Protones , Protones , Supervivencia Celular , Método de Montecarlo , Radiometría , Incertidumbre
5.
J Phys Chem Lett ; 8(23): 5695-5699, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29099188

RESUMEN

Converting low-energy photons via thermal radiation can be a potential approach for utilizing infrared (IR) photons to improve photovoltaic efficiency. Lanthanide-containing materials have achieved great progress in IR-to-visible photon upconversion (UC). Herein, we first report bright photon, tunable wavelength UC through localized thermal radiation at the molecular scale with low excitation power density (<10 W/cm2) realized on lanthanide complexes of perfluorinated organic ligands. This is enabled by engineering the pathways of nonradiative de-excitation and energy transfer in a composite of ytterbium and terbium perfluoroimidodiphosphinates. The IR-excited thermal UC and wavelength control is realized through the terbium activators sensitized by the ytterbium sensitizers having high luminescence efficiency. The metallic molecular composite thus can be a potential energy material in the use of the IR solar spectrum for thermal photovoltaic applications.

6.
Beilstein J Nanotechnol ; 5: 105-10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24605276

RESUMEN

The ion-irradiation induced synthesis of embedded Au nanoparticles (NPs) into glass from islands of Au on a glass substrate is studied in the context of recoiling atoms, sputtering and viscous flow. Cross sectional transmission electron microscopy studies revealed the formation of Au NPs embedded in the glass substrates by the 50 keV Si(-) ion irradiation of irregularly shaped Au nanostructures on the glass surfaces at a fluence of 3 × 10(16) ions/cm(2). The depth profiles of Au in the samples were obtained from high-resolution Rutherford backscattering spectrometry studies. The results from TRIDYN simulation reveal the role of various ion-induced processes during the synthesis of the embedded Au NPs, viz. sputtering and recoiling atoms. Simulation and experimental results suggest that the viscous flow is one of the major factors that are responsible for the embedding of Au nanoparticles into the glass substrate.

7.
Appl Radiat Isot ; 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-19136265

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...