Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
1.
Sci Rep ; 14(1): 26721, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39496684

RESUMEN

In this study, the microstructure and elemental analysis of aluminum-copper alloy type-2024, Al-2024, and aluminum-manganese alloy type-3003, Al-3003, have been investigated by using a scanning electron microscope (SEM) equipped with Energy dispersive spectroscopy (EDS) detector. Experimental and theoretical radiation shielding studies were performed to assess the radiation shielding capabilities of the studied alloys. Considering the radiation shielding theoretical assessment, some reliable software tools were used, such as Phy-X/PSD, MCNP5, NXCom, and MRCsC. The microstructural observations and results have shown the presence of second phases rich with the main alloying elements in both alloys. Considering Al-2024 alloy, coarse second-phase particles, having a size range of 8-15 µm, were found aligning in lines parallel to the rolling direction, whereas smaller ones, having a size range of 2-8 µm, were found decorated the grain boundaries. Also, dark holes represent the pull-out large particles separated during preparation indicated poor adhesion with the main matrix that could be a result of losing particle coherency with the matrix where the misorientation in-between the atomic planes increase. However, better adhesion of the second-phase particles with the matrix, which were found possessing smaller particle size, have been observed in the Al-3003 alloy indicating good coherency and better manufacturing process for the non-heat-treatable alloy. The second-phase particles in case of Al-2024 alloy were found containing significant content of high-Z elements like Cu with greater volume fraction equals 7.5%. On the other side, Al-3003 alloy has possessed second-phase particles which lack of high-Z elements with only volume fraction equals 3.5%. All the former besides the higher density and content of high-Z elements like copper in Al-2024 alloy in compare to Al-3003 alloy and pure aluminum, led to relatively better radiation shielding capabilities against energetic photons, the highest in the low energy band and decreases with the increase of the photon energy, and slight superiority in the case of fast neutrons with only 3%inc. over pure aluminum. For instance, the radiation protection efficiency (RPE) values dropped from about; 23.2, 21.6, and 20.8% at 0.100 MeV to only 5.7, 5.9, and 5.6% at Eγ = 2 MeV, for; Al-2024, Al-3003, and Al-Pure, respectively."Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.""confirmed".

2.
Blood ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39437546

RESUMEN

Glutamine dependency has been shown to be a metabolic vulnerability in acute myeloid leukemia (AML). Prior studies using several in vivo AML models showed that depletion of plasma glutamine induced by the long-acting crisantaspase (pegcrisantaspase or PegC) was synergistic with the BCL-2 inhibitor venetoclax (Ven), resulting in significantly reduced leukemia burden and enhanced survival. Here, we report a phase 1 study (NCT04666649) of Ven and PegC combination (VenPegC) for treating adult patients with relapsed or refractory AML, including patients who had previously received Ven. The primary endpoints were incidence of regimen limiting toxicities (RLT) and maximum tolerated dose (MTD). Twenty-five patients received at least one PegC dose with Ven and 18 efficacy-evaluable patients completed at least one VenPegC cycle; 12 (67%) had previously received Ven. Hyperbilirubinemia was the RLT and occurred in 60% of patients treated with VenPegC; 20% had Grade ≥3 bilirubin elevations. MTD was determined to be Ven 400 mg daily with biweekly PegC 750 IU/m2. The most common treatment-related adverse events of any Grade in 25 patients who received VenPegC included antithrombin III decrease (52%), elevated transaminases (36-48%), fatigue (28%), and hypofibrinogenemia (24%). No thromboembolic or hemorrhagic adverse events or clinical pancreatitis were observed. The overall complete remission rate in efficacy-evaluable patients was 33%. Response correlated with alterations in proteins involved in mRNA translation. In patients with RUNX1 mutations, the composite complete rate was 100%.

3.
J Am Chem Soc ; 146(42): 29094-29103, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39385061

RESUMEN

Shortwave infrared (SWIR) light emitters and detectors are crucial in numerous applications. Conventionally, SWIR devices rely on epitaxially grown narrow bandgap semiconductors, such as InGaAs, which are expensive to fabricate and difficult to integrate with silicon complementary metal-oxide-semiconductors (CMOS). Colloidal quantum dots (CQDs) have emerged as low-cost alternatives to epitaxially grown semiconductors, offering integration with CMOS through solution-processing methods. However, the predominant SWIR-active CQD systems rely on heavy-metal-containing compositions (PbS and HgTe), hindering the adoption of CQD SWIR technology. InAs CQDs are promising substitutes in SWIR applications. However, synthesizing SWIR-active InAs CQDs is challenging, often constraining them to the visible or near-infrared regions. To achieve SWIR bandgaps, large InAs CQDs are typically required; such CQDs are prone to having surface traps that quench photogenerated charge carriers, adversely affecting device performance. Here, we report a two-step synthesis of surface-passivated SWIR-active InAs/ZnSe core/shell colloidal nanorod quantum dots (CNQDs). These surface-passivated CNQDs are highly emissive and tunable over the entire technologically important region (1200-1800 nm) of the SWIR window with photoluminescence quantum yields as high as 60%. Using these SWIR-active InAs/ZnSe CNQDs, we demonstrated an SWIR-active InAs CQD photodetector, achieving a record high external quantum efficiency of ∼15% at ∼1450 nm and a low dark current of ∼10-2 mA/cm2.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39423296

RESUMEN

Novel scintillation materials have played an indispensable role in the recent remarkable progress witnessed for X-ray imaging technology. Herein, a high-performance X-ray scintillation screen was developed based on a highly efficient hybrid system combining inorganic ZnS (Ag) with thermally activated delayed fluorescence (TADF) scintillator materials via an interfacial energy transfer (EnT) mechanism. ZnS (Ag) has a high X-ray absorption capacity and functions as the initial layer for efficiently converting high-energy X-ray photons into low-energy visible light (acting as a sensitizer) while also serving as an energy donor. The TADF component, on the contrary, is an energy acceptor and forms an active scintillating layer. By harnessing TADF chromophores that can efficiently capture both singlet and triplet excitons, our composite material offers a remarkable spatial imaging resolution of 24 line pairs per millimeter, surpassing those of the majority of existing organic and inorganic scintillators. Further, our interfacial energy transfer strategy effectively amplifies the radioluminescence intensity of the TADF scintillator by a factor of 75, offering an outstanding light yield of 38,000 photons/MeV. This advancement represents a remarkable breakthrough in organic X-ray scintillation technology and is a notable achievement within the X-ray imaging field, paving the way for novel applications in medical imaging and security inspection.

5.
Cureus ; 16(9): e70533, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39479151

RESUMEN

Introduction Despite Saudi Arabia's' free healthcare system, breast cancer (BC) has a major impact on affected individuals. Previous studies have shown that socioeconomic variables could contribute to inequities in receiving treatment. Although early detection and treatment are essential, delays are frequently influenced by either insurance status or other socioeconomic variables. Assessing characteristics that influence the duration of BC treatment for Saudi women will aid in improving health equity and lowering system costs. Methods This was a cross-sectional study that included all female patients who were diagnosed with BC between 2016 and 2023 at a tertiary care center. All patients were contacted by phone calls to fill out a questionnaire. Results A total of 113 females were included; the mean age at the time of diagnosis with BC was 48.88±10.97 years, and the majority were Saudis (58.4%). Additionally, the median duration for treatment initiation was 28 (15.50-45.50) days from the date of diagnosis. Factors influencing the time for initiating the treatment included nationality, as non-Saudis took longer to receive their treatment (27.00 (13.00-39.25) days vs. 30.00 (18.00-59.00) days, p = 0.176). Moreover, patients living further from the hospital demonstrated a delay in receiving treatment compared to those living near the hospital. However, the relation was not statistically significant. Conclusion Our study investigated the demographic disparities among BC patients. Our results showed that some variables contributed to a delay in treatment initiation, including nationality and distance from the hospital, which suggest further areas for investigation. We recommend further studies be conducted with a larger sample size to improve accessibility and reduce treatment delays for BC patients.

6.
J Am Chem Soc ; 146(39): 26994-27005, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39297671

RESUMEN

Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.

7.
Adv Mater ; : e2409354, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39344865

RESUMEN

Aqueous ammonium ion batteries have garnered significant research interest due to their safety and sustainability advantages. However, the development of reliable ammonium-based full batteries with consistent electrochemical performance, particularly in terms of cycling stability, remains challenging. A primary issue stems from the lack of suitable anode materials, as the relatively large NH4 + ions can cause structural damage and material dissolution during battery operation. To address this challenge, an Aza-based covalent organic framework (COF) material is introduced as an anode for aqueous ammonium ion batteries. This material exhibits superior ammonium storage capabilities compared to existing anode materials. It operates effectively within a negative potential range of 0.3 to‒1.0 V versus SCE, achieves high capacity even at elevated current densities (≈74 mAh g-1 at 10 A g-1), and demonstrates exceptional stability, retaining a capacity over 20 000 cycles at 1.0 A g-1. Furthermore, by pairing this COF anode with a Prussian blue cathode, an ammonium rocking-chair full battery is developedd that maintains 89% capacity over 20 000 cycles at 1.0 A g-1, surpassing all previously reported ammonium ion full batteries. This study offers insights for the design of future anodes for ammonium ion batteries and holds promise for high-energy storage solutions.

8.
Adv Sci (Weinh) ; 11(40): e2404468, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39206684

RESUMEN

Single crystal perovskites have garnered significant attention as potential replacements for existing absorber layer materials. Despite the extensive investigations on their photoinduced charge-carriers dynamics, most of the time-resolved techniques focus on bulk properties, neglecting surface characteristic which plays a crucial role for their optoelectronic performance. Herein, 4D ultrafast scanning electron microscopy (4D-USEM) is utilized to probing the photogenerated carrier transport at the first few nanometers, alongside density functional theory (DFT) to track both defect centers and ions migration. Two compositions of mixed cation are investigated: FA0.6MA0.4PbI3 and FA0.4MA0.6PbI3, interestingly, the former displays a longer lifetime compared to the latter due the presence of a higher surface-defect centers. DFT calculations fully support that revealing samples with higher FA content have a lower energy barrier for iodide ions to migrate from the bulk to top layer, assisting in passivating surface vacancies, and a higher energy diffusion barrier to escape from surface to vacuum, resulting in fewer vacancies and longer-lived hole-electron pairs. These findings manifest the influence of cation selection on charge carrier transport and formation of defects, and emphasize the importance of understanding ion migrations role in controlling surface vacancies to assist engineering high-performance optoelectronic devices based on single crystal perovskites.

9.
BMC Vet Res ; 20(1): 367, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148099

RESUMEN

BACKGROUND: Recurrent dehydration causes chronic kidney disease in humans and animal models. The dromedary camel kidney has remarkable capacity to preserve water and solute during long-term dehydration. In this study, we investigated the effects of dehydration and subsequent rehydration in the camel's kidney histology/ultrastructure and changes in aquaporin/solute carrier proteins along with gene expression. RESULTS: In light microscopy, dehydration induced few degenerative and necrotic changes in cells of the cortical tubules with unapparent or little effect on medullary cells. The ultrastructural changes encountered in the cortex were infrequent during dehydration and included nuclear chromatin condensation, cytoplasmic vacuolization, mitochondrial swelling, endoplasmic reticulum/ lysosomal degeneration and sometimes cell death. Some mRNA gene expressions involved in cell stability were upregulated by dehydration. Lesions in endothelial capillaries, glomerular membranes and podocyte tertiary processes in dehydrated camels indicated disruption of glomerular filtration barrier which were mostly corrected by rehydration. The changes in proximal tubules brush borders after dehydration, were accompanied by down regulation of ATP1A1 mRNA involved in Na + /K + pump that were corrected by rehydration. The increased serum Na, osmolality and vasopressin were paralleled by modulation in expression level for corresponding SLC genes with net Na retention in cortex which were corrected by rehydration. Medullary collecting ducts and interstitial connective tissue were mostly unaffected during dehydration. CKD, a chronic nephropathy induced by recurrent dehydration in human and animal models and characterized by interstitial fibrosis and glomerular sclerosis, were not observed in the dehydrated/rehydrated camel kidneys. The initiating factors, endogenous fructose, AVP/AVPR2 and uric acid levels were not much affected. TGF-ß1 protein and TGF-ß1gene expression showed no changes by dehydration in cortex/medulla to mediate fibrosis. KCNN4 gene expression level was hardly detected in the dehydrated camel's kidney; to encode for Ca + + -gated KCa3.1 channel for Ca + + influx to instigate TGF-ß1. Modulation of AQP 1, 2, 3, 4, 9 and SLC protein and/or mRNAs expression levels during dehydration/rehydration was reported. CONCLUSIONS: Long-term dehydration induces reversible or irreversible ultrastructural changes in kidney cortex with minor effects in medulla. Modulation of AQP channels, SLC and their mRNAs expression levels during dehydration/rehydration have a role in water conservation. Cortex and medulla respond differently to dehydration/rehydration.


Asunto(s)
Acuaporinas , Camelus , Deshidratación , Riñón , Animales , Deshidratación/veterinaria , Acuaporinas/metabolismo , Acuaporinas/genética , Riñón/patología , Riñón/metabolismo , Masculino , Fluidoterapia/veterinaria , Regulación de la Expresión Génica , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética
10.
Braz J Biol ; 84: e282436, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39194021

RESUMEN

The present study has been conducted to evaluate the effect of two sprays of seven pesticides at recommended dose on citrus brown mite, Eutetranychus orientalis and the side effects on their predatory mites, Euseius scutalis, Amblyseius swirskii, Phytoseiulus persimilis (Acari: Phytoseiidae) under field conditions at 2022 & 2023 seasons. The obtained results show that, all tested pesticides achieved high reduction % of E. orientalis ranged between (82.1-90.0%) and (81.6-87.1%) after the 1st and 2nd sprays of 2022 season, where it ranged between (84.9- 88.7%) and ( 79.7- 88.7%) after 1st and 2nd sprays of 2023 season. Abamectin recorded the highest reduction % against the citrus brown mite, whereas Congest pesticide recorded the lowest reduction % after the two sprays along 2022 & 2023 seasons. As for the side effects of tested pesticides on associated predatory mites, all pesticides were safely for E. scutalis numbers recording decrease % between (18.4-28.6%) and (16.2 -26.1%) after the 1st and 2nd spray at 2022 season , where it ranged between (15.3- 29.1%) and (19.6-32.0%) after the 1st and 2nd sprays of 2023 season. On contrary, imidacloprid was unsafely for E. scutalis numbers recording the highest mean decrease % after 1st and 2nd sprays during the two seasons. Also, all tested pesticides were safely for A. swirskii numbers, after the 1st and 2nd sprays of the two seasons recording decrease (from 10.9 to 28.1%) & (24.4 to 31.4%) for the 2022 season, and (19-38.9%) & (18.7-39.4%) at 2023 season. On contrary, imidacloprid was unsafely for A. swirskii numbers recorded the highest decrease % after 1st and 2nd sprays during the two seasons. As for, Ph. Persimilis numbers, all tested pesticides were safely, where it recorded low decrease % ranged between (17-33.8%) & (20.4-34.8%) after the 1st and 2nd sprays of 2022 season, and (24.3-39%) & (20.2-28.9%) after the 1st and 2nd sprays of 2023 season. On the other side, imidacloprid was unsafely for Ph. persimilis numbers recording the highest decrease % after the 1st and 2nd sprays during the two seasons. The present study proved that all tested pesticides were high effective against E. orientalis and appeared to be safely and selective for associated predatory mites except imidacloprid which was very harmful for all tested predatory mites, and it could be concluded that the tested pesticides, Fenpyroximate, Hexythiazox , Congest , Spirodiclofen, Abamectin, and Chlorfenapyr could be used in the Integrated Pest Management (IPM) programs for E. orientalis at citrus orchards.


Asunto(s)
Citrus , Neonicotinoides , Conducta Predatoria , Estaciones del Año , Tetranychidae , Animales , Conducta Predatoria/efectos de los fármacos , Tetranychidae/efectos de los fármacos , Acaricidas , Ácaros/efectos de los fármacos , Ácaros/clasificación , Nitrocompuestos , Ivermectina/análogos & derivados , Piretrinas , Plaguicidas/farmacología
11.
Adv Mater ; : e2405214, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194391

RESUMEN

Wafer-scale transfer processes of 2D materials significantly expand their application space in scalable microelectronic devices with excellent and tunable properties through van der Waals (vdW) stacking. Unlike many 2D materials, wafer-scale transfer of MXene films for vdW contact engineering has not yet been reported. With their rich surface chemistry and tunable properties, the transfer of MXenes can enable enormous possibilities in electronic devices using interface engineering. Taking advantage of the MXene hydrophilic surface, a straightforward, green, and fast process for the transfer of MXene films at the wafer scale (4-inch) is developed. Uniform vdW stacking of several types of large-area heterojunctions including MXene/MXene (Ti3C2Tx, Nb2CTx, and V2CTx), MXene/MoS2, and MXene/Au is further demonstrated. Multilayer support is applied to minimize damage or deformation in the transfer process of patterned Ti3C2Tx film. It allows us to fabricate thin film transistors and manipulate the MXene/MoS2 interface through the intercalation of various 2D liquids. Particularly noteworthy is the significant enhancement of the interfacial carrier transfer efficiency by ≈2 orders of magnitude using hydrogen iodide (HI) intercalation. This finding indicates a wide range of possibilities for interface engineering by transferring MXene films and employing liquid-assisted interfacial intercalation.

12.
Braz J Biol ; 84: e284320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166691

RESUMEN

Piercing sucking pests attacking sweet pepper plants cause significant losses to its yield. Considering the undesirable effects of synthetic pesticides, field studies were conducted to evaluate the impact of new pesticides against piercing sucking insect pests of sweet pepper, as well as, their effects on some predators and pepper yield along two seasons of 2021-2022. The obtained results indicated that all tested pesticides effectively suppressed the sucking insect populations (aphids, white fly, thrips) 1,7,14 and 21 days after treatment along two sprays during two seasons. Imidacloprid proved to be the superior one over all other treatments where it recorded mean reduction% (98.91 and 97.27%) & (94.8 and 95.19%), (86.23 and 76.64%) & (80.92 and 88.55%) and (77.68 and 78.44%) & (90.70 and 68.57%) in white fly, aphids and thrips, respectively at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. As for side effects of tested insecticides on natural enemies, Dimethoate induced the highest decrease (60.85 and 69.33%) & (54.02 and 63.41%), (65.52 and 64.74%) & (59.23 and 58.38%) and (64.24 and 59.48%) & (61.66 and 60.8%) on Chrysoperla carnea, Paederus alfierii and Coccinella spp at 1st and 2nd sprays at 2021 and 2022 seasons, respectively. On contrary, Spintoram induced the lowest effects on Chrysoperla carnea, Paederus alfierii and Coccinella spp, recording decrease percent (25.41 and 19.84%) & (15.02 and 12.50%), (11.94 and 11.24%) (16.99 and 18.02%) and (18.73 and15.07%) & (18.35 and18.38%) at1st and 2nd sprays at 2021 and 2022 seasons, respectively. With respect to the effect of tested insecticides on pepper yield, all tested insecticides increased the yield of green pepper fruits compared with control. Imidacloprid achieved the highest fruit yields along two seasons 6.43 and 6.52 (ton / fed.4200 m2) with increase percent 34.53 and 36.04% in yield over control at 2021 and 2022 seasons, respectively.


Asunto(s)
Áfidos , Capsicum , Insecticidas , Neonicotinoides , Nitrocompuestos , Estaciones del Año , Animales , Insecticidas/farmacología , Capsicum/efectos de los fármacos , Capsicum/parasitología , Nitrocompuestos/farmacología , Áfidos/efectos de los fármacos , Áfidos/fisiología , Neonicotinoides/farmacología , Imidazoles/farmacología , Thysanoptera/efectos de los fármacos , Thysanoptera/fisiología , Insectos/efectos de los fármacos , Insectos/fisiología , Factores de Tiempo
13.
Adv Mater ; : e2404291, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975670

RESUMEN

The transition toward hydrogen gas (H2) as an eco-friendly and renewable energy source necessitates advanced safety technologies, particularly robust sensors for H2 leak detection and concentration monitoring. Although palladium (Pd)-based materials are preferred for their strong H2 affinity, intense palladium-hydrogen (Pd-H) interactions lead to phase transitions to palladium hydride (PdHx), compromising sensors' durability and detection speeds after multiple uses. In response, this study introduces a high-performance H2 sensor designed from thiolate-protected Pd nanoclusters (Pd8SR16), which leverages the synergistic effect between the metal and protective ligands to form an intermediate palladium-hydrogen-sulfur (Pd-H-S) state during H2 adsorption. Striking a balance, it preserves Pd-H binding affinity while preventing excessive interaction, thus lowering the energy required for H2 desorption. The dynamic adsorption-dissociation-recombination-desorption process is efficiently and highly reversible with Pd8SR16, ensuring robust and rapid H2 sensing at parts per million (ppm). The Pd8SR16-based sensor demonstrates exceptional stability (50 cycles; 0.11% standard deviation in response), prompt response/recovery (t90 = 0.95 s/6 s), low limit of detection (LoD, 1 ppm), and ambient temperature operability, ranking it among the most sensitive Pd-based H2 sensors. Furthermore, a multifunctional prototype demonstrates the practicality of real-world gas sensing using ligand-protected metal nanoclusters.

14.
ACS Nano ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951541

RESUMEN

Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb3+), commonly referred to as Gadox, is a widely used scintillator material due to its exceptional X-ray attenuation efficiency and high light yield. However, Gadox-based scintillators suffer from low X-ray spatial resolution due to their large particle size, which causes significant light scattering. To address this limitation, we report the synthesis of terbium-doped colloidal Gadox nanoplatelets (NPLs) with near-unity photoluminescence quantum yield (PLQY) and high radioluminescence light yield (LY). In particular, our investigation reveals a strong correlation between PLQY, LY, particle size, and Tb3+concentration. Our synthetic approach allows precise control over the lateral size and thickness of the Gadox NPLs, resulting in a LY of 50,000 photons/MeV. Flexible scintillating screens fabricated with the solution-processable Gadox NPLs exhibited a 20 lp/mm X-ray spatial resolution, surpassing commercial Gadox scintillators. These high-performance and flexible Gadox NPL-based scintillators enable enhanced X-ray imaging capabilities in medicine and security. Our work provides a framework for designing nanomaterial scintillators with superior spatial resolution and efficiency through precise control of dimensions and dopant concentration.

16.
Med J Malaysia ; 79(3): 337-341, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38817068

RESUMEN

INTRODUCTION: The aim of this study was to evaluate a group of infants born to women with tuberculosis (TB) during pregnancy to determine the neonatal morbidities and its outcomes associated with tuberculosis in pregnancy. MATERIALS AND METHODS: Data from January 2007 to December 2021 was collected for analysis as part of a retrospective cohort study. This study was conducted in a tertiary public hospital in Malaysia, Hospital Sultan Idris Shah (HSIS). Cases were identified from the hospital's bacille Calmette-Guerin (BCG) vaccination notification forms and merged with records from the neonatal intensive care unit's census. Controls were infants born to mothers unaffected by TB within the same hospital and year as the index case (1:4 ratio). Descriptive statistics and logistic regression were used to analyse the data. The main outcome measures were the risk of congenital tuberculosis, premature birth, low birth weight, small for gestational age and low APGAR score. RESULTS: Data from January 2007 to December 2021 was collected for analysis as part of a retrospective cohort study. This study was conducted in a tertiary public hospital in Malaysia, Hospital Sultan Idris Shah (HSIS). Cases were identified from the hospital's bacille Calmette-Guerin (BCG) vaccination notification forms and merged with records from the neonatal intensive care unit's census. Controls were infants born to mothers unaffected by TB within the same hospital and year as the index case (1:4 ratio). Descriptive statistics and logistic regression were used to analyse the data. The main outcome measures were the risk of congenital tuberculosis, premature birth, low birth weight, small for gestational age and low APGAR score.


Asunto(s)
Centros de Atención Terciaria , Tuberculosis , Humanos , Femenino , Estudios Retrospectivos , Embarazo , Recién Nacido , Malasia/epidemiología , Centros de Atención Terciaria/estadística & datos numéricos , Tuberculosis/epidemiología , Adulto , Complicaciones Infecciosas del Embarazo/epidemiología , Resultado del Embarazo , Nacimiento Prematuro/epidemiología , Recién Nacido de Bajo Peso , Masculino , Puntaje de Apgar , Estudios de Cohortes
17.
J Am Chem Soc ; 146(23): 16295-16305, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38816788

RESUMEN

Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu45(TBBT)29(TPP)4(C4H11N)2H14]2+ (Cu45) (TBBT: 4-tert-butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method. The resulting structurally well-defined Cu45 is a highly efficient catalyst for the hydroboration reaction of alkynes and alkenes. Mechanistic studies show that a single-electron oxidation of the in situ-formed ate complex enables the hydroboration via the formation of boryl-centered radicals under mild conditions. This work demonstrates the promise of tailored copper nanoclusters as catalysts for C-B heteroatom bond-forming reactions. The catalysts are compatible with a wide range of alkynes and alkenes and functional groups for producing hydroborated products.

18.
Front Neurol ; 15: 1373890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694780

RESUMEN

Background: Headache disorder is the second-highest cause of disability worldwide; however, data are scarce on headache among adolescents, especially in Africa. There has yet to be published data on headache among adolescents in Sudan, the third-largest country in Africa. This study aimed to assess the prevalence of primary headache disorders and associated factors among adolescents (10-19 years) in eastern Sudan. Methods: A community-based cross-sectional study was conducted in the city of Gadarif in eastern Sudan. Questionnaires were used to gather the adolescents' sociodemographic characteristics. Headache diagnostic questions were based on the beta version of the International Classification of Headache Disorders-III (ICHD-3). Multivariate analysis was conducted to assess the associated factors for primary headache disorders, and the results were expressed as risk ratios (RRs) and 95.0% confidence interval (CI). Results: Of the 401 enrolled adolescents, 186 (46.4%) and 215 (53.6%) were male and female, respectively. The median (IQR) age was 14.0 (12.1-16.2) years. Eighty-one (20.2%) of the 401 adolescents reported experiencing primary headache disorders, including migraine with aura in 16 (4.0%), migraine without aura in 33 (8.2%), tension-type in 14 (3.5%), and undifferentiated headache in 18 (4.5%) adolescents. The prevalence of primary headache disorders was significantly higher in females than in males [55/215 (67.9%) vs. 26/186 (32.1%), p = 0.004]. In the multivariate analysis, increased age (RR = 1.09, 95.0 CI = 1.02-1.16) and being female (RR = 1.75, 95.0 CI = 1.14-2.67) were associated with increased RR of primary headache disorders. Parents' education level and occupation, smoking/snuff use, and body mass index were not associated with primary headache disorders. Conclusion: One-fifth of the adolescents in eastern Sudan reported experiencing primary headache disorders, which was more common in females and with increased age.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38573046

RESUMEN

Tracking the dynamics of ultrafast hole injection into copper thiocyanate (CuSCN) at the interface can be experimentally challenging. These challenges include restrictions in accessing the ultraviolet spectral range through transient electronic spectroscopy, where the absorption spectrum of CuSCN is located. Time-resolved vibrational spectroscopy solves this problem by tracking marker modes at specific frequencies and allowing direct access to dynamical information at the molecular level at donor-acceptor interfaces in real time. This study uses photoabsorber PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)-benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))]) as a model system to explore and decipher the hole transfer dynamics of CuSCN using femtosecond (fs) mid-infrared (IR) spectroscopy. The time-resolved results indicate that excited PM6 exhibits a sharp vibrational mode at 1599 cm-1 attributed to the carbonyl group, matching the predicted frequency position obtained from time-dependent density functional theory (DFT) calculations. The fs mid-IR spectroscopy demonstrates a fast formation (<168 fs) and blue spectral shift of the CN stretching vibration from 2118 cm-1 for CuSCN alone to 2180 cm-1 for PM6/CuSCN, confirming the hole transfer from PM6 to CuSCN. The short interfacial distance and high frontier orbital delocalization obtained from the interfacial DFT models support a coherent and ultrafast regime for hole transfer. These results provide direct evidence for hole injection at the interface of CuSCN for the first time using femtosecond mid-IR spectroscopy and serve as a new investigative approach for interfacial chemistry and solar cell communities.

20.
Mater Horiz ; 11(10): 2494-2505, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38477151

RESUMEN

Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu29(StBu)13Cl5(PPh3)4H10]tBuSO3 (StBu: tert-butylthiol; PPh3: triphenylphosphine), Cu29NC, with multiple accessible active sites on its shell. We show that this nanocluster is a versatile catalyst for C-heteroatom bond formation (C-O, C-N, and C-S) with several advantages over previous Cu systems. When supported, the cluster can also be reused as a heterogeneous catalyst without losing its efficiency, making it a hybrid homogeneous and heterogeneous catalyst. We elucidated the atomic-level mechanism of the catalysis using density functional theory (DFT) calculations based on the single crystal structure. We found that the cooperative action of multiple neighboring active sites is essential for the catalyst's efficiency. The calculations also revealed that oxidative addition is the rate-limiting step that is facilitated by the neighboring active sites of the Cu29NC, which highlights a unique advantage of nanoclusters over traditional copper catalysts. Our results demonstrate the potential of nanoclusters for enabling the rational atomically precise design and investigation of multi-site catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...