Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0389422, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36790200

RESUMEN

Therapeutic bacteriophages (phages) are being considered as alternatives in the fight against Clostridioides difficile infections. To be efficient, phages should have a wide host range, buthe lack of knowledge about the cell receptor used by C. difficile phages hampers the rational design of phage cocktails. Recent reports suggested that the C. difficile surface layer protein A (SlpA) is an important phage receptor, but available data are still limited. Here, using the epidemic R20291 strain and its FM2.5 mutant derivative lacking a functional S-layer, we show that the absence of SlpA renders cells completely resistant to infection by ϕCD38-2, ϕCD111, and ϕCD146, which normally infect the parental strain. Complementation with 12 different S-layer cassette types (SLCTs) expressed from a plasmid revealed that SLCT-6 also allowed infection by ϕCD111 and SLCT-11 enabled infection by ϕCD38-2 and ϕCD146. Of note, the expression of SLCT-1, -6, -8, -9, -10, or -12 conferred susceptibility to infection by 5 myophages that normally do not infect the R20291 strain. Also, deletion of the D2 domain within the low-molecular-weight fragment of SlpA was found to abolish infection by ϕCD38-2 and ϕCD146 but not ϕCD111. Altogether, our data suggest that many phages use SlpA as their receptor and, most importantly, that both siphophages and myophages target SlpA despite major differences in their tail structures. Our study therefore represents an important step in understanding the interactions between C. difficile and its phages. IMPORTANCE Phage therapy represents an interesting alternative to treat Clostridioides difficile infections because, contrary to antibiotics, most phages are highly species specific, thereby sparing the beneficial gut microbes that protect from infection. However, currently available phages against C. difficile have a narrow host range and target members from only one or a few PCR ribotypes. Without a clear comprehension of the factors that define host specificity, and in particular the host receptor recognized by phages, it is hard to develop therapeutic cocktails in a rational manner. In our study, we provide clear and unambiguous experimental evidence that SlpA is a common receptor used by many siphophages and myophages. Although work is still needed to define how a particular phage receptor-binding protein binds to a specific SLCT, the identification of SlpA as a common receptor is a major keystone that will facilitate the rational design of therapeutic phage cocktails against clinically important strains.

3.
mBio ; 6(5): e01112-15, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26330515

RESUMEN

UNLABELLED: Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. IMPORTANCE: Clostridium difficile is the major cause of nosocomial infections associated with antibiotic therapy worldwide. To survive in bacteriophage-rich gut communities, enteropathogens must develop efficient systems for defense against foreign DNA elements. CRISPR-Cas systems have recently taken center stage among various anti-invader bacterial defense systems. We provide experimental evidence for the function of the C. difficile CRISPR system against plasmid DNA and bacteriophages. These data demonstrate the original features of active C. difficile CRISPR system and bring important insights into the interactions of this major enteropathogen with foreign DNA invaders during its infection cycle.


Asunto(s)
Sistemas CRISPR-Cas , Clostridioides difficile/enzimología , Clostridioides difficile/genética , ADN Bacteriano/genética , Perfilación de la Expresión Génica , Escherichia coli/genética , Datos de Secuencia Molecular , ARN Viral/análisis , ARN Viral/genética , Análisis de Secuencia de ADN
4.
Mol Microbiol ; 98(2): 329-42, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26179020

RESUMEN

Bacteriophages are present in virtually all ecosystems, and bacteria have developed multiple antiphage strategies to counter their attacks. Clostridium difficile is an important pathogen causing severe intestinal infections in humans and animals. Here we show that the conserved cell-surface protein CwpV provides antiphage protection in C. difficile. This protein, for which the expression is phase-variable, is classified into five types, each differing in their repeat-containing C-terminal domain. When expressed constitutively from a plasmid or the chromosome of locked 'ON' cells of C. difficile R20291, CwpV conferred antiphage protection. Differences in the level of phage protection were observed depending on the phage morphological group, siphophages being the most sensitive with efficiency of plaquing (EOP) values of < 5 × 10(-7) for phages ϕCD38-2, ϕCD111 and ϕCD146. Protection against the myophages ϕMMP01 and ϕCD52 was weaker, with EOP values between 9.0 × 10(-3) and 1.1 × 10(-1). The C-terminal domain of CwpV carries the antiphage activity and its deletion, or part of it, significantly reduced the antiphage protection. CwpV does not affect phage adsorption, but phage DNA replication is prevented, suggesting a mechanism reminiscent of superinfection exclusion systems normally encoded on prophages. CwpV thus represents a novel ubiquitous host-encoded and phase-variable antiphage system in C. difficile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos/crecimiento & desarrollo , Pared Celular/química , Clostridioides difficile/metabolismo , Clostridioides difficile/virología , Animales , Proteínas Bacterianas/genética , Bacteriófagos/patogenicidad , Bacteriófagos/fisiología , Pared Celular/metabolismo , Clostridioides difficile/química , Clostridioides difficile/genética , ADN Viral/genética , Humanos , Análisis de Secuencia de ADN
5.
Bioinform Biol Insights ; 8: 169-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25210446

RESUMEN

MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate transcriptional and posttranscriptional gene regulation of the cell. Experimental evidence shows that miRNAs have a direct role in different cellular processes, such as immune function, apoptosis, and tumorigenesis. In a viral infection context, miRNAs have been connected with the interplay between host and pathogen, occupying a major role in pathogenesis. While numerous viral miRNAs from DNA viruses have been identified, characterization of functional RNA virus-encoded miRNAs and their potential targets is still ongoing. Here, we used an in silico approach to analyze dengue Virus genome sequences. Pre-miRNAs were extracted through VMir software, and the identification of putative pre-miRNAs and mature miRNAs was accessed using Support Vector Machine web tools. The targets were scanned using miRanda software and functionally annotated using ClueGo. Via computational tools, eight putative miRNAs were found to hybridize with numerous targets of morphogenesis, differentiation, migration, and growth pathways that may play a major role in the interaction of the virus and its host. Future approaches will focus on experimental validation of their presence and target messenger RNA genes to further elucidate their biological functions in human and mosquito cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...