RESUMEN
Post-transcriptional control of gene expression is crucial for the control of cellular differentiation. Erythroid precursor cells loose their organelles in a timely controlled manner during terminal maturation to functional erythrocytes. Extrusion of the nucleus precedes the release of young reticulocytes into the blood stream. The degradation of mitochondria is initiated by reticulocyte 15-lipoxygenase (r15-LOX) in mature reticulocytes. At that terminal stage the release of r15-LOX mRNA from its translational silenced state induces the synthesis of r15-LOX. Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a key regulator of r15-LOX mRNA translation. HnRNP K that binds to the differentiation control element (DICE) in the 3' untranslated region (UTR) inhibits r15-LOX mRNA translation initiation. During erythroid cell maturation, activation of r15-LOX mRNA translation is mediated by post-translational modifications of hnRNP K and a decrease of the hnRNP K level. To further elucidate its function in the post-transcriptional control of gene expression, we investigated hnRNP K degradation employing an inducible erythroid cell system that recapitulates both nuclear extrusion and the timely controlled degradation of mitochondria, mediated by the activation of r15-LOX synthesis. Interestingly, we detected a specific N-terminal cleavage intermediate of hnRNP K lacking DICE-binding activity that appeared during erythroid differentiation and puromycin-induced apoptosis. Employing mass spectrometry and enzymatic analyses, we identified Caspase-3 as the enzyme that cleaves hnRNP K specifically. In vitro studies revealed that cleavage by Caspase-3 at amino acids (aa) D334-G335 removes the C-terminal hnRNP K homology (KH) domain 3 that confers binding of hnRNP K to the DICE. Our data suggest that the processing of hnRNP K by Caspase-3 provides a save-lock mechanism for its timely release from the r15-LOX mRNA silencing complex and activation of r15-LOX mRNA synthesis in erythroid cell differentiation.
Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Caspasa 3/metabolismo , Diferenciación Celular/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Reticulocitos/metabolismo , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Araquidonato 15-Lipooxigenasa/genética , Caspasa 3/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteolisis/efectos de los fármacos , Puromicina/farmacología , Reticulocitos/citología , Transducción de Señal/efectos de los fármacos , Factores de TiempoRESUMEN
Heterogeneous nuclear ribonucleoprotein K (hnRNP-K) is one of a family of 20 proteins that are involved in transcription and post-transcriptional messenger RNA metabolism. The mechanisms that underlie regulation of hnRNP-K activities remain largely unknown. Here we show that cytoplasmic accumulation of hnRNP-K is phosphorylation-dependent. Mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) efficiently phosphorylates hnRNP-K both in vitro and in vivo at serines 284 and 353. Serum stimulation or constitutive activation of ERK kinase (MEK1) results in phosphorylation and cytoplasmic accumulation of hnRNP-K. Mutation at ERK phosphoacceptor sites in hnRNP-K abolishes the ability to accumulate in the cytoplasm and renders the protein incapable of regulating translation of mRNAs that have a differentiation-control element (DICE) in the 3' untranslated region (UTR). Similarly, treatment with a pharmacological inhibitor of the ERK pathway abolishes cytoplasmic accumulation of hnRNP-K and attenuates inhibition of mRNA translation. Our results establish the role of MAPK/ERK in phosphorylation-dependent cellular localization of hnRNP-K, which is required for its ability to silence mRNA translation.
Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Biosíntesis de Proteínas , Ribonucleoproteínas/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Western Blotting , Línea Celular , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Genes Reporteros/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Ribonucleoproteínas Nucleares Heterogéneas , Humanos , Microscopía Fluorescente , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , TransfecciónRESUMEN
15-lipoxygenase (LOX) expression is translationally silenced in early erythroid precursor cells by a specific mRNA-protein complex formed between the differentiation control element in the 3' untranslated region (UTR) and hnRNPs K and E1. The 3'UTR regulatory complex prevents translation initiation by an unknown mechanism. We demonstrate that the 40S ribosomal subunit can be recruited and scan to the translation initiation codon even when the silencing complex is bound to the 3'UTR. However, the joining of the 60S ribosomal subunit at the AUG codon to form a translation competent 80S ribosome is inhibited, unless initiation is mediated by the IGR-IRES of the cricket paralysis virus. These findings identify the critical step at which LOX mRNA translation is controlled and reveal that 60S subunit joining can be specifically regulated.
Asunto(s)
Regiones no Traducidas 3'/genética , Araquidonato 15-Lipooxigenasa/genética , Proteínas de la Cápside , Silenciador del Gen , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Reticulocitos/metabolismo , Ribosomas/metabolismo , Regiones no Traducidas 3'/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Cápside/genética , Cápside/metabolismo , Sistema Libre de Células , Clonación Molecular , Genes Reporteros , Técnicas In Vitro , Sustancias Macromoleculares , Modelos Biológicos , Modelos Genéticos , ARN Nuclear Heterogéneo/genética , ARN Nuclear Heterogéneo/metabolismo , ARN Mensajero/genética , Conejos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismoRESUMEN
Fragile X syndrome is a common form of inherited mental retardation. Most fragile X patients exhibit mutations in the fragile X mental retardation gene 1 (FMR1) that lead to transcriptional silencing and hence to the absence of the fragile X mental retardation protein (FMRP). Since FMRP is an RNA-binding protein which associates with polyribosomes, it had been proposed to function as a regulator of gene expression at the post-transcriptional level. In the present study, we show that FMRP strongly inhibits translation of various mRNAs at nanomolar concentrations in both rabbit reticulocyte lysate and microinjected Xenopus laevis oocytes. This effect is specific for FMRP, since other proteins with similar RNA-binding domains, including the autosomal homologues of FMRP, FXR1 and FXR2, failed to suppress translation in the same concentration range. Strikingly, a disease-causing Ile-->Asn substitution at amino acid position 304 (I304N) renders FMRP incapable of interfering with translation in both test systems. Initial studies addressing the underlying mechanism of inhibition suggest that FMRP inhibits the assembly of 80S ribosomes on the target mRNAs. The failure of FMRP I304N to suppress translation is not due to its reduced affinity for mRNA or its interacting proteins FXR1 and FXR2. Instead, the I304N point mutation severely impairs homo-oligomerization of FMRP. Our data support the notion that inhibition of translation may be a function of FMRP in vivo. We further suggest that the failure of FMRP to oligomerize, caused by the I304N mutation, may contribute to the pathophysiological events leading to fragile X syndrome.
Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/fisiología , Biosíntesis de Proteínas , Animales , Asparagina/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Humanos , Isoleucina/genética , Microinyecciones , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oocitos/metabolismo , Iniciación de la Cadena Peptídica Traduccional/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Conejos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Proteínas Ribosómicas/antagonistas & inhibidores , Proteínas Ribosómicas/metabolismo , Proteínas de Xenopus , Xenopus laevisAsunto(s)
Araquidonato 15-Lipooxigenasa/genética , Regulación de la Expresión Génica , Proteínas Nucleares/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Factores de Transcripción/genética , Regiones no Traducidas 3'/genética , Animales , Proteínas de Unión al ADN , Proteínas de Drosophila , Cinética , Mamíferos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reticulocitos/enzimologíaRESUMEN
From a rabbit reticulocyte library a full length cDNA was isolated which predicted a novel lipoxygenase (LOX) sharing 99% identical amino acids with the rabbit 15-lipoxygenase. HPLC product analysis of the bacterially expressed protein identified it as a leukocyte-type 12-lipoxygenase (1.12-LOX). This proves the co-expression of a 15-lipoxygenase and a 1.12-lipoxygenase in one mammalian species. Among the six amino acids that are different to rabbit 15-lipoxygenase, leucine 353 is shown to be the primary determinant for 12-positional specificity. In the 3'-untranslated region of the 12-LOX-mRNA a CU-rich, 20-fold repetitive element has been found, closely related to the differentiation control element (DICE) of the rabbit 15-LOX-mRNA which is organized by ten repeats of 19 bases. By genomic PCR the 3'-terminal part of the gene for the novel 12-lipoxygenase containing the introns 10-13 has been amplified and sequenced. The introns were very similar in length to the corresponding 15-lipoxygenase introns with 89% to 95% identical nucleotide sequences. By screening a rabbit reticulocyte library an alternative 15-lipoxygenase transcript of 3.6 kb has been detected containing a 1019 nucleotides longer 3'-untranslated region (UTR2) than the main 2.6 kb mRNA. The determination of the tissue distribution by Northern blotting showed that the 3.6 kb mRNA2 was only expressed in non-erythroid tissues, whereas the 2.6 kb mRNA1 was exclusively expressed in reticulocytes. The only cell type which has been found to express the 1.12-lipoxygenase abundantly are monocytes. The results indicate that the expression of 1.12-lipoxygenase and 15-lipoxygenase is highly regulated. The UTR2 of the 15-LOX-mRNA2 contained a novel eight-fold repetitive CU-rich motif of 23 bases length which is related but not identical to the DICE of 19 bases in the UTR1. The analysis of a genomic recombinant of the complete 9.0 kb Alox15 gene confirmed that UTR1 and UTR2 are not interrupted by an additional intron.
Asunto(s)
Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Leucocitos/enzimología , Reticulocitos/enzimología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Araquidonato 12-Lipooxigenasa/clasificación , Secuencia de Bases , Citoplasma , Regulación de la Expresión Génica , Datos de Secuencia Molecular , ARN Mensajero , Conejos , Distribución TisularAsunto(s)
Citoplasma/fisiología , Proteínas de Unión al ADN , ARN Nuclear Heterogéneo/fisiología , Proteínas de Unión al ARN/fisiología , Ribonucleoproteínas/fisiología , Factores de Transcripción , Animales , Araquidonato 15-Lipooxigenasa/biosíntesis , Araquidonato 15-Lipooxigenasa/genética , Sitios de Unión , Línea Celular , ADN/metabolismo , Regulación de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas , Humanos , Conformación Proteica , ARN/metabolismo , Homología de Secuencia de AminoácidoRESUMEN
Although LOX mRNA accumulates early during differentiation, a differentiation control element in its 3' untranslated region confers translational silencing until late stage erythropoiesis. We have purified two proteins from rabbit reticulocytes that specifically mediate LOX silencing and identified them as hnRNPs K and E1. Transfection of hnRNP K and hnRNP E1 into HeLa cells specifically silenced the translation of reporter mRNAs bearing a differentiation control element in their 3' untranslated region. Silenced LOX mRNA in rabbit reticulocytes specifically coimmunoprecipitated with hnRNP K. In a reconstituted cell-free translation system, addition of recombinant hnRNP K and hnRNP E1 recapitulates this regulation via a specific inhibition of 80S ribosome assembly on LOX mRNA. Both proteins can control cap-dependent and internal ribosome entry site-mediated translation by binding to differentiation control elements. Our data suggest a specific cytoplasmic function for hnRNPs as translational regulatory proteins.
Asunto(s)
Araquidonato 15-Lipooxigenasa/genética , Eritrocitos/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular , Sistema Libre de Células , Citoplasma/metabolismo , Eritrocitos/citología , Eritropoyesis , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Ribonucleoproteínas Nucleares Heterogéneas , Humanos , Técnicas In Vitro , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Conejos , Reticulocitos/metabolismo , Ribonucleoproteínas/genética , TransfecciónRESUMEN
During red blood cell differentiation, the mRNA encoding rabbit erythroid 15-lipoxygenase (LOX) is synthesized in the early stages of erythropoiesis, but is only activated for translation in peripheral reticulocytes. Erythroid LOX, which like other lipoxygenases catalyses the degradation of lipids, is unique in its ability to attack intact phospholipids and is the main factor responsible for the degradation of mitochondria during reticulocyte maturation. Strikingly, rabbit erythroid LOX mRNA has 10 tandem repeats of a slightly varied, pyrimidine-rich 19 nt motif in its 3'-untranslated region (3'-UTR). In this study we demonstrate, using gel retardation and UV-crosslinking assays, that this 3'-UTR segment specifically binds a 48 kDa reticulocyte protein. Furthermore, the interaction between the 3'-UTR LOX repeat motif and the 48 kDa protein, purified to homogeneity by specific RNA chromatography, is shown to be necessary and sufficient for specific translational repression of LOX as well as reporter mRNAs in vitro. To our knowledge this is the first case in which translation, presumably at the initiation step, is regulated by a defined protein-RNA interaction in the 3'-UTR.
Asunto(s)
Araquidonato 15-Lipooxigenasa/genética , Proteínas Sanguíneas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Secuencia de Bases , Sitios de Unión , Proteínas Sanguíneas/aislamiento & purificación , Cromatografía de Afinidad , Regulación hacia Abajo , Intrones , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos , ARN Mensajero/antagonistas & inhibidores , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/aislamiento & purificación , Conejos , Reticulocitos/metabolismoRESUMEN
The recombinant rabbit reticulocyte 15-lipoxygenase has been expressed in E. coli with a yield of about 50-70 micrograms pure lipoxygenase protein per 1 of liquid culture. The enzyme has been purified to apparent homogeneity from the bacteria lysis supernatant by ammonium sulfate precipitation, and two consecutive steps of anion exchange chromatography on a Mono Q column. As the native enzyme the recombinant lipoxygenase has a molecular mass of 75 kDa, an isoelectric point of 5.5 and oxygenates both linoleic acid (formation of 13S-hydroperoxy-9Z,13E-octadecadienoic acid) and arachidonic acid. With the latter substrate it exhibits a dual positional specificity (formation of 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetranoic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid in a ratio of 12:1). Furthermore, the enzyme is capable of oxygenating biomembranes, as indicated by HPLC analysis of esterified oxygenated polyenoic fatty acids.