Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(22): 226301, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37327420

RESUMEN

Electron-hole plasma expansion with velocities exceeding c/50 and lasting over 10 ps at 300 K was evidenced by time-resolved terahertz spectroscopy. This regime, in which the carriers are driven over >30 µm is governed by stimulated emission due to low-energy electron-hole pair recombination and reabsorption of the emitted photons outside the plasma volume. At low temperatures a speed of c/10 was observed in the regime where the excitation pulse spectrally overlaps with emitted photons, leading to strong coherent light-matter interaction and optical soliton propagation effects.


Asunto(s)
Arsenicales , Galio , Fotones , Electrones
2.
Phys Rev Lett ; 129(2): 024801, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867456

RESUMEN

We study free electron dynamics during inelastic interaction with the ponderomotive potential of a traveling optical wave using classical and quantum-mechanical models. We show that in the strong interaction regime, the electrons trapped in the periodic potential oscillate leading to periodic revolutions of sharp peaks of the density distributions in the real and momentum spaces. In this regime, the synchronicity between the velocity of the optical wave and the electron propagation velocity is not required. Asynchronous interaction enables acceleration or deceleration of a significant fraction of the electrons to a final spectrum with a relative spectral width of 0.5%-2.5%. This technique allows one to accelerate electrons from rest to keV energies while reaching a narrow spectrum of kinetic energies and femtosecond pulsed operation.

3.
Opt Express ; 29(19): 30461-30472, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614769

RESUMEN

We present an effective way to improve the security of a point-to-point terahertz wireless link on a physical layer supported by numerical calculations in the frame of Fourier optics. The improvement is based on original countermeasures which exploit three independent degrees of freedom of the carrier wave: its intensity and azimuthal and radial symmetry. When the transmission line is intercepted, the light beam is subject to changes in either of the three degrees of freedom. We propose a strategy to measure these changes and they are quantified by a single eavesdropping parameter that is shown to be correlated to the secrecy capacity of the transmission. Consequently, its excessive value serves as an indication of the beam interception. We consider the carrier wave in the form of Gaussian and vortex beams. Comparison between the two reveals that vortex beam ensures a even higher level of security.

4.
Opt Lett ; 36(7): 1095-7, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21478994

RESUMEN

We observe anisotropy in the polarization flux generated in a GaAs/AlAs photonic cavity by optical illumination, equivalent to spin currents in strongly coupled microcavities. Polarization rotation of the scattered photons around the Rayleigh ring is due to the TE-TM splitting of the cavity mode. Resolving the circular polarization components of the transmission reveals a separation of the polarization flux in momentum space. These observations constitute the optical analogue of the spin Hall effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...