Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell ; 184(2): 323-333.e9, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33306959

RESUMEN

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Teléfono Celular/instrumentación , Imagen Óptica/métodos , ARN Viral/análisis , Carga Viral/métodos , Animales , Prueba de Ácido Nucleico para COVID-19/economía , Prueba de Ácido Nucleico para COVID-19/instrumentación , Sistemas CRISPR-Cas , Línea Celular , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Nasofaringe/virología , Imagen Óptica/instrumentación , Fosfoproteínas/genética , Pruebas en el Punto de Atención , Interferencia de ARN , ARN Viral/genética , Sensibilidad y Especificidad , Carga Viral/economía , Carga Viral/instrumentación
2.
Hum Mol Genet ; 27(21): 3761-3771, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010873

RESUMEN

Axon degeneration occurs in all neurodegenerative diseases, but the molecular pathways regulating axon destruction during neurodegeneration are poorly understood. Sterile Alpha and TIR Motif Containing 1 (Sarm1) is an essential component of the prodegenerative pathway driving axon degeneration after axotomy and represents an appealing target for therapeutic intervention in neurological conditions involving axon loss. Amyotrophic lateral sclerosis (ALS) is characterized by rapid, progressive motor neuron degeneration and muscle atrophy, causing paralysis and death. Patient tissue and animal models of ALS show destruction of upper and lower motor neuron cell bodies and loss of their associated axons. Here, we investigate whether loss of Sarm1 can mitigate motor neuron degeneration in the SOD1G93A mouse model of ALS. We found no change in survival, behavioral, electrophysiogical or histopathological outcomes in SOD1G93A mice null for Sarm1. Blocking Sarm1-mediated axon destruction alone is therefore not sufficient to suppress SOD1G93A-induced neurodegeneration. Our data suggest the molecular pathways driving axon loss in ALS may be Sarm1-independent or involve genetic pathways that act in a redundant fashion with Sarm1.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Neuronas Motoras/metabolismo , Degeneración Nerviosa , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas del Dominio Armadillo/fisiología , Axotomía , Proteínas del Citoesqueleto/fisiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Superóxido Dismutasa/genética
3.
Biochem Pharmacol ; 151: 144-156, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29309763

RESUMEN

Biomedical research is being transformed by the discovery and use of human pluripotent stem cells (hPSCs). Remarkable progress has been made, and assorted clinical trials are underway related to the application of stem cell therapy, including transplantation of hPSC-derived cells, in situ reprogramming or transdifferentiation, and utilization of targets and compounds identified from patient-derived stem cells. However, the pace of discovery is overwhelming efforts to replicate the work of others, prompting a concern over validity and reproducibility. Here, we address some sources of variability in reprogramming, maintaining, and differentiating hPSCs that impact interpretation of studies involving their use, and how it relates to efforts to move the field forward. The commitment in time and resources required to generate and maintain cell-lines, coupled with marked variations between hPSCs derived from patients with the same disease, has resulted in a fundamental change in how research is conducted. Dr. Michael Williams has championed the need to appropriately validate all cell-lines before use to limit sources of variability, although defining what constitutes a validated hPSC in the era of single cell-omics can be challenging.


Asunto(s)
Investigación Biomédica/normas , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Pluripotentes/citología , Línea Celular , Humanos , Reproducibilidad de los Resultados
4.
Cell Syst ; 6(1): 13-24, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29199020

RESUMEN

The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability.


Asunto(s)
Catalogación/métodos , Biología de Sistemas/métodos , Biología Computacional/métodos , Bases de Datos de Compuestos Químicos/normas , Perfilación de la Expresión Génica/métodos , Biblioteca de Genes , Humanos , Almacenamiento y Recuperación de la Información/métodos , Programas Nacionales de Salud , National Institutes of Health (U.S.)/normas , Transcriptoma , Estados Unidos
5.
Neuron ; 95(1): 78-91.e5, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683272

RESUMEN

Axon degeneration is a hallmark of neurodegenerative disease and neural injury. Axotomy activates an intrinsic pro-degenerative axon death signaling cascade involving loss of the NAD+ biosynthetic enzyme Nmnat/Nmnat2 in axons, activation of dSarm/Sarm1, and subsequent Sarm-dependent depletion of NAD+. Here we identify Axundead (Axed) as a mediator of axon death. axed mutants suppress axon death in several types of axons for the lifespan of the fly and block the pro-degenerative effects of activated dSarm in vivo. Neurodegeneration induced by loss of the sole fly Nmnat ortholog is also fully blocked by axed, but not dsarm, mutants. Thus, pro-degenerative pathways activated by dSarm signaling or Nmnat elimination ultimately converge on Axed. Remarkably, severed axons morphologically preserved by axon death pathway mutations remain integrated in circuits and able to elicit complex behaviors after stimulation, indicating that blockade of axon death signaling results in long-term functional preservation of axons.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Axones/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas de Drosophila/genética , Nicotinamida-Nucleótido Adenililtransferasa/genética , Degeneración Walleriana/genética , Animales , Animales Modificados Genéticamente , Proteínas del Dominio Armadillo/metabolismo , Antenas de Artrópodos/lesiones , Antenas de Artrópodos/inervación , Axotomía , Conducta Animal , Western Blotting , Línea Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Aseo Animal , Inmunidad Activa , NAD/metabolismo , Neuronas/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Optogenética , Degeneración Walleriana/metabolismo , Alas de Animales/lesiones , Alas de Animales/inervación
6.
Science ; 337(6093): 481-4, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22678360

RESUMEN

Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/fisiología , Axones/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Neuronas/fisiología , Degeneración Walleriana , Animales , Animales Modificados Genéticamente , Apoptosis , Proteínas del Dominio Armadillo/análisis , Axones/ultraestructura , Axotomía , Supervivencia Celular , Células Cultivadas , Proteínas del Citoesqueleto/análisis , Desnervación , Drosophila/embriología , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/análisis , Ratones , Mutación , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Transducción de Señal , Ganglio Cervical Superior/citología , Técnicas de Cultivo de Tejidos
7.
Biology (Basel) ; 1(3): 766-77, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-24832518

RESUMEN

Forward genetic screens in Drosophila melanogaster using ethyl methanesulfonate (EMS) mutagenesis are a powerful approach for identifying genes that modulate specific biological processes in an in vivo setting. The mapping of genes that contain randomly-induced point mutations has become more efficient in Drosophila thanks to the maturation and availability of many types of genetic tools. However, classic approaches to gene mapping are relatively slow and ultimately require extensive Sanger sequencing of candidate chromosomal loci. With the advent of new high-throughput sequencing techniques, it is increasingly efficient to directly re-sequence the whole genome of model organisms. This approach, in combination with traditional chromosomal mapping, has the potential to greatly simplify and accelerate mutation identification in mutants generated in EMS screens. Here we show that next-generation sequencing (NGS) is an accurate and efficient tool for high-throughput sequencing and mutation discovery in Drosophila melanogaster. As a test case, mutant strains of Drosophila that exhibited long-term survival of severed peripheral axons were identified in a forward EMS mutagenesis. All mutants were recessive and fell into a single lethal complementation group, which suggested that a single gene was responsible for the protective axon degenerative phenotype. Whole genome sequencing of these genomes identified the underlying gene ect4. To improve the process of genome wide mutation identification, we developed Genomes Management Application (GEM.app, https://genomics.med.miami.edu), a graphical online user interface to a custom query framework. Using a custom GEM.app query, we were able to identify that each mutant carried a unique non-sense mutation in the gene ect4 (dSarm), which was recently shown by Osterloh et al. to be essential for the activation of axonal degeneration. Our results demonstrate the current advantages and limitations of NGS in Drosophila and we introduce GEM.app as a simple yet powerful genomics analysis tool for the Drosophila community. At a current cost of <$1,000 per genome, NGS should thus become a standard gene discovery tool in EMS induced genetic forward screens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...