Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 346: 140482, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37875215

RESUMEN

Ethyl nitrate (EN; C2H5ONO2) is an important component of atmospheric "odd nitrogen" (NOy) whose main source is marine emissions. To correctly describe its air-water transfer and model its global distribution, accurate values for its temperature- and salinity-dependent Henry's law solubility constants are needed. Here, we report Henry's law (HScp) constants for EN in deionized (DI) water, synthetic sea salt solutions (SSS), and n-octanol at temperatures between 278.2 K and 303.2 K. For DI water, HScp constants of (2.03 ± 0.06) M atm-1 at 293.2 K and (4.88 ± 0.13) M atm-1 at 278.2 K were observed (all stated uncertainties are at the 1σ level). The data are best described by ln(HScp(aq)/[Matm-1]) = -(16.2 ± 0.4)+(4.94 ± 0.11) × 103/T and ln(HScp(octanol)/[Matm-1]) = -(11.1 ± 1.9)+(4.15 ± 0.33) × 103/T, from which the octanol-water partition coefficient (KOW) was calculated. A temperature-independent salting-out factor of 1.25 ± 0.03 and Setschenow constant of KS = (0.33 ± 0.04) mol kg-1 were determined for SSS. Liquid-phase losses of EN were negligible in all solvents (kl < 1 × 10-4 s-1). The HScp(aq) values agree with results by Kames (1993) but are between 2% (at 303.2 K) and 19% (at 278.2 K) lower than the widely used parameterization by Kames and Schurath (1992), indicating a systemic bias in the EN literature and modelling of the Earth's nitrogen cycle.


Asunto(s)
Agua , 1-Octanol , Temperatura , Octanoles
2.
J Environ Sci (China) ; 107: 184-193, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34412781

RESUMEN

The reference method to quantify mixing ratios of the criteria air pollutant nitrogen dioxide (NO2) is NO-O3 chemiluminescence (CL), in which mixing ratios of nitric oxide (NO) are measured by sampling ambient air directly, and mixing ratios of NOx (= sum of NO and NO2) are measured by converting NO2 to NO using, for example, heated molybdenum catalyst or, more selectively, photolytic conversion (P-CL). In this work, the nitrous acid (HONO) interference in the measurement of NO2 by P-CL was investigated. Results with two photolytic NO2 converters are presented. The first used radiation centered at 395 nm, a wavelength region commonly utilized in P-CL. The second used light at 415 nm, where the overlap with the HONO absorption spectrum and hence its photolysis rate are less. Mixing ratios of NO2, NOx and HONO entering and exiting the converters were quantified by Thermal Dissociation Cavity Ring-down Spectroscopy (TD-CRDS). Both converters exhibited high NO2 conversion efficiency (CFNO2; > 90%) and partial conversion of HONO. Plots of CF against flow rate were consistent with photolysis frequencies of 4.2 s-1 and 2.9 s-1 for NO2 and 0.25 s-1 and 0.10 s-1 for HONO at 395 nm and 415 nm, respectively. CFHONO was larger than predicted from the overlap of the emission and HONO absorption spectra. The results imply that measurements of NO2 by P-CL marginally but systematically overestimate true NO2 concentrations, and that this interference should be considered in environments with high HONO:NO2 ratios such as the marine boundary layer or in biomass burning plumes.


Asunto(s)
Contaminantes Atmosféricos , Dióxido de Nitrógeno , Contaminantes Atmosféricos/análisis , Óxido Nítrico , Dióxido de Nitrógeno/análisis , Ácido Nitroso/análisis , Fotólisis
3.
Environ Sci Technol ; 54(16): 9854-9861, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32639152

RESUMEN

A thermal dissociation cavity ring-down spectrometer (TD-CRDS) for real-time quantification of non-refractory aerosol nitrate in ambient air is described. The instrument uses four parallel detection channels and heated quartz inlets to convert particulate organic nitrate (pON) (at 350 °C) and ammonium nitrate (NH4NO3) aerosol (at 540 °C) to nitrogen dioxide (NO2), whose mixing ratio is monitored via its absorption at 405 nm. Concentrations of aerosol nitrate are determined by difference relative to a parallel TD-CRDS channel in which aerosol is removed by in-line filtering. The method was validated by sampling gas streams containing laboratory-generated NH4NO3 aerosol in parallel to a scanning mobility particle sizer (SMPS). Scatter plots of TD-CRDS and SMPS data correlated (r2 > 0.9) with slopes near unity, confirming quantitative TD-CRDS response to NH4NO3 aerosol. In contrast, no response was observed when sampling (NH4)2SO4 aerosol. Instrument limits of detection (LOD; 2σ, 10 s) were 120 parts per trillion by volume (10-12, pptv) for NO2 and 148 pptv for ammonium nitrate. Partial and unsustained conversion of refractory sodium nitrate (NaNO3) was observed at the inlet temperature used for complete dissociation of HNO3 and NH4NO3, suggesting that this channel may not constitute a robust measurement of total odd nitrogen (NOy) in environments where NaNO3 particles may be present (e.g., the polluted marine boundary layer). A potential application of the TD-CRDS is the calibration of particle counters, for which convenient methods are not currently available. Sample ambient air measurements of pON and total aerosol nitrate in Calgary are presented.


Asunto(s)
Dióxido de Nitrógeno , Óxidos de Nitrógeno , Aerosoles , Nitrógeno , Dióxido de Nitrógeno/análisis , Análisis Espectral
4.
J Air Waste Manag Assoc ; 70(8): 753-764, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32412399

RESUMEN

Mixing ratios of the criteria air contaminant nitrogen dioxide (NO2) are commonly quantified by reduction to nitric oxide (NO) using a photolytic converter followed by NO-O3 chemiluminescence (CL). In this work, the performance of a photolytic NO2 converter prototype originally designed for continuous emission monitoring and emitting light at 395 nm was evaluated. Mixing ratios of NO2 and NOx (= NO + NO2) entering and exiting the converter were monitored by blue diode laser cavity ring-down spectroscopy (CRDS). The NO2 photolysis frequency was determined by measuring the rate of conversion to NO as a function of converter residence time and found to be 4.2 s-1. A maximum 96% conversion of NO2 to NO over a large dynamic range was achieved at a residence time of (1.5 ± 0.3) s, independent of relative humidity. Interferences from odd nitrogen (NOy) species such as peroxyacyl nitrates (PAN; RC(O)O2NO2), alkyl nitrates (AN; RONO2), nitrous acid (HONO), and nitric acid (HNO3) were evaluated by operating the prototype converter outside its optimum operating range (i.e., at higher pressure and longer residence time) for easier quantification of interferences. Four mechanisms that generate artifacts and interferences were identified as follows: direct photolysis, foremost of HONO at a rate constant of 6% that of NO2; thermal decomposition, primarily of PAN; surface promoted photochemistry; and secondary chemistry in the connecting tubing. These interferences are likely present to a certain degree in all photolytic converters currently in use but are rarely evaluated or reported. Recommendations for improved performance of photolytic converters include operating at lower cell pressure and higher flow rates, thermal management that ideally results in a match of photolysis cell temperature with ambient conditions, and minimization of connecting tubing length. When properly implemented, these interferences can be made negligibly small when measuring NO2 in ambient air. IMPLICATIONS: A new near-UV photolytic converter for measurement of the criteria pollutant nitrogen dioxide (NO2) in ambient air by NO-O3 chemiluminescence (CL) was characterized. Four mechanisms that generate interferences were identified and investigated experimentally: direct photolysis of nitrous acid, which occurred at a rate constant 6% that of NO2, thermal decomposition of PAN and N2O5, surface promoted chemistry involving nitric acid, and secondary chemistry involving NO in the tubing connecting the converter and CL analyzer. These interferences are predicted to occur in all NO2 P-CL systems but can be avoided by appropriate thermal management and operating at high flow rates.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/instrumentación , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/química , Dióxido de Nitrógeno/química , Fotólisis
5.
Anal Bioanal Chem ; 410(17): 4203-4212, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29725732

RESUMEN

Triacetone triperoxide (TATP) is frequently used in improvised explosive devices because of its ease of manufacture and tremendous explosive force. In this paper, we describe a new method for detection of TATP, thermal decomposition peroxy radical chemical amplification cavity ring-down spectroscopy (TD-PERCA-CRDS). In this method, air is sampled through a heated inlet to which ~ 1 ppmv nitric oxide (NO) is added. To verify the purity of synthetic standards, the mid-infrared spectrum of TATP vapor was recorded. The thermal decomposition of TATP is shown to produce radicals which oxidize NO to nitrogen dioxide (NO2), whose concentration increase is monitored by optical absorption at 405 nm using a blue diode laser CRDS. The sensitivity could be improved through addition of ~ 1% ethane (C2H6), which fuels catalytic conversion of NO to NO2. The limit of detection of TD-PERCA-CRDS with respect to TATP is 22 pptv (1 s data), approximately six orders of magnitude below TATP's saturation vapor pressure. Insights into the mechanism of TATP thermal decomposition, TD-PERCA-CRDS interferences, and the suitability of TD-PERCA-CRDS as a peroxy radical explosive detection method at security check points are discussed.

6.
Atmos Chem Phys ; 17(3): 2103-2162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30147712

RESUMEN

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

7.
Nature ; 534(7605): 91-4, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251281

RESUMEN

Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Atmósfera/química , Yacimiento de Petróleo y Gas , Industria del Petróleo y Gas , Alberta , Clima , Actividades Humanas , Hidrocarburos/análisis , Hidrocarburos/química , Material Particulado/análisis , Material Particulado/química , Petróleo , Volatilización
8.
Environ Sci Technol ; 46(20): 10965-73, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23013316

RESUMEN

Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Radicales Libres/análisis , Contaminación del Aire/estadística & datos numéricos , Atmósfera/química , Los Angeles , Nitritos/análisis , Ácido Nitroso/análisis
9.
J Phys Chem A ; 116(24): 5923-31, 2012 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-22214212

RESUMEN

The photolysis of nitrate anion (NO(3)(-)) contained in surface ice and snow can be a regionally significant source of gas-phase nitrogen oxides and affect the composition of the planetary boundary layer. In this study, the photochemical release of nitrogen oxides from frozen solutions containing NO(3)(-) in the presence of organic compounds was investigated. Gas-phase nitrogen oxides were quantified primarily by NO-O(3) chemiluminescence detection of NO and NO(y) (=NO + NO(2) + HONO + HNO(3) + ∑PAN + ∑AN ...) and cavity ring-down spectroscopy of NO(2) and total alkyl nitrates (∑AN). The photochemical production of gas-phase NO(y) was suppressed by the presence of formate, methanesulfonate, toluene, or phenol. In contrast, para-halogenated phenols (in the order of Cl > Br > F) promoted the conversion of NO(3)(-) to gas-phase NO(y), rationalized by acidification of the ice surface.


Asunto(s)
Hielo , Nitratos/química , Óxidos de Nitrógeno/química , Fenoles/química , Fotólisis , Soluciones , Propiedades de Superficie
10.
Appl Spectrosc ; 65(11): 1260-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22054085

RESUMEN

A compact rack-mounted cavity ring-down spectrometer (CRDS) for simultaneous measurements of the nocturnal nitrogen oxides NO(3) and N(2)O(5) in ambient air is described. The instrument uses a red diode laser to quantify mixing ratios of NO(3) (at its absorption maximum at 662 nm) and of N(2)O(5) following its thermal dissociation to NO(3) in a second detection channel. The spectrometer is equipped with an automated zeroing and calibration setup to determine effective NO(3) absorption cross-sections and NO(3) and N(2)O(5) inlet transmission efficiencies. The instrument response was calibrated using simultaneous measurements of NO(2), generated by thermal dissociation of N(2)O(5) and/or by titration of NO(3) with excess NO, using blue diode laser CRDS at 405 nm. When measuring ambient air, the (2σ, 10 s) precision of the red diode CRDS varied between 5 and 8 parts-per-trillion by volume (pptv), which sufficed to quantify N(2)O(5) concentrations under moderately polluted conditions. Sample N(2)O(5) measurements made on a rooftop on the University of Calgary campus in August 2010 are presented. A maximum N(2)O(5) mixing ratio of 130 pptv was observed, corresponding to a steady-state lifetime of less than 50 min. The NO(3) mixing ratios were below the detection limit, consistent with their predicted values based on equilibrium calculations. During the measurement period, the instrument response for N(2)O(5) was 70% of the theoretical maximum, rationalized by a slight mismatch of the laser diode output with the NO(3) absorption line and a N(2)O(5) inlet transmission efficiency less than unity. Advantages and limitations of the instrument's compact design are discussed.

11.
Environ Sci Technol ; 45(20): 8889-96, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21877701

RESUMEN

In the troposphere, nitryl chloride (ClNO2), produced from uptake of dinitrogen pentoxide (N2O5) on chloride containing aerosol, can be an important nocturnal reservoir of NO(x) (= NO + NO2) and a source of atomic Cl, particularly in polluted coastal environments. Here, we present measurements of ClNO2 mixing ratios by chemical ionization mass spectrometry (CIMS) in Calgary, Alberta, Canada over a 3-day period. The observed ClNO2 mixing ratios exhibited a strong diurnal profile, with nocturnal maxima in the range of 80 to 250 parts-per-trillion by volume (pptv) and minima below the detection limit of 5 pptv in the early afternoon. At night, ClNO2 constituted up to 2% of odd nitrogen, or NO(y). The peak mixing ratios of ClNO2 observed were considerably below the modeled integrated heterogeneous losses of N2O5, indicating that ClNO2 production was a minor pathway compared to heterogeneous hydrolysis of N2O5. Back trajectory analysis using HYSPLIT showed that the study region was not influenced by fresh injections of marine aerosol, implying that aerosol chloride was derived from anthropogenic sources. Molecular chlorine (Cl2), derived from local anthropogenic sources, was observed at mixing ratios of up to 65 pptv and possibly contributed to formation of aerosol chloride and hence the formation of ClNO2.


Asunto(s)
Monitoreo del Ambiente/métodos , Nitritos/análisis , Aerosoles/análisis , Canadá , Geografía , Espectrometría de Masas , Óxidos de Nitrógeno/análisis
12.
Anal Chem ; 83(7): 2761-6, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21391546

RESUMEN

Nitryl chloride (ClNO(2)) is an important nocturnal nitrogen oxide reservoir species in the troposphere. Here, we report a novel method, thermal dissociation cavity ring-down spectroscopy (TD-CRDS), to quantify ClNO(2) mixing ratios with tens of parts-per-trillion by volume (pptv) sensitivity. The mixing ratios of ClNO(2) are determined by blue diode laser CRDS of NO(2), produced from quantitative thermal dissociation of ClNO(2) in an inlet heated to 450 °C, relative to NO(2) observed in an unheated reference channel. ClNO(2) was generated by passing Cl(2) gas over a slurry containing a 1:10 mixture of NaNO(2) and NaCl. The TD-CRDS response was evaluated using parallel measurements of ClNO(2) by chemical ionization mass spectrometry (CIMS) using I(-) as the reagent ion and NO(y) (= NO + NO(2) + HNO(3) + ΣRO(2)NO(2) + ΣRONO(2) + HONO + 2N(2)O(5) + ClNO(2) + ...) chemiluminescence (CL). The linear dynamic range extends from the detection limit of 20 pptv (1 σ, 1 min) to 30 parts-per-billion by volume (ppbv), the highest mixing ratio tested. The ClNO(2) TD profile overlaps with those of alkyl nitrates, which has implications for nocturnal measurements of total alkyl nitrate (ΣAN = ΣRONO(2)) abundances by thermal dissociation (with detection as NO(2)) in ambient air.

13.
J Am Chem Soc ; 132(45): 16094-106, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-20977265

RESUMEN

The mechanistic details of the Ce(IV)-driven oxidation of water mediated by a series of structurally related catalysts formulated as [Ru(tpy)(L)(OH(2))](2+) [L = 2,2'-bipyridine (bpy), 1; 4,4'-dimethoxy-2,2'-bipyridine (bpy-OMe), 2; 4,4'-dicarboxy-2,2'-bipyridine (bpy-CO(2)H), 3; tpy = 2,2';6'',2''-terpyridine] is reported. Cyclic voltammetry shows that each of these complexes undergo three successive (proton-coupled) electron-transfer reactions to generate the [Ru(V)(tpy)(L)O](3+) ([Ru(V)=O](3+)) motif; the relative positions of each of these redox couples reflects the nature of the electron-donating or withdrawing character of the substituents on the bpy ligands. The first two (proton-coupled) electron-transfer reaction steps (k(1) and k(2)) were determined by stopped-flow spectroscopic techniques to be faster for 3 than 1 and 2. The addition of one (or more) equivalents of the terminal electron-acceptor, (NH(4))(2)[Ce(NO(3))(6)] (CAN), to the [Ru(IV)(tpy)(L)O](2+) ([Ru(IV)=O](2+)) forms of each of the catalysts, however, leads to divergent reaction pathways. The addition of 1 eq of CAN to the [Ru(IV)=O](2+) form of 2 generates [Ru(V)=O](3+) (k(3) = 3.7 M(-1) s(-1)), which, in turn, undergoes slow O-O bond formation with the substrate (k(O-O) = 3 × 10(-5) s(-1)). The minimal (or negligible) thermodynamic driving force for the reaction between the [Ru(IV)=O](2+) form of 1 or 3 and 1 eq of CAN results in slow reactivity, but the rate-determining step is assigned as the liberation of dioxygen from the [Ru(IV)-OO](2+) level under catalytic conditions for each complex. Complex 2, however, passes through the [Ru(V)-OO](3+) level prior to the rapid loss of dioxygen. Evidence for a competing reaction pathway is provided for 3, where the [Ru(V)=O](3+) and [Ru(III)-OH](2+) redox levels can be generated by disproportionation of the [Ru(IV)=O](2+) form of the catalyst (k(d) = 1.2 M(-1) s(-1)). An auxiliary reaction pathway involving the abstraction of an O-atom from CAN is also implicated during catalysis. The variability of reactivity for 1-3, including the position of the RDS and potential for O-atom transfer from the terminal oxidant, is confirmed to be intimately sensitive to electron density at the metal site through extensive kinetic and isotopic labeling experiments. This study outlines the need to strike a balance between the reactivity of the [Ru═O](z) unit and the accessibility of higher redox levels in pursuit of robust and reactive water oxidation catalysts.

14.
Anal Chem ; 82(15): 6695-703, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20698583

RESUMEN

Peroxycarboxylic nitric anhydrides (PANs) have long been recognized as important trace gas constituents of the troposphere. Here, we describe a blue diode laser thermal dissociation cavity ring-down spectrometer for rapid and absolute measurements of total peroxyacyl nitrate (SigmaPAN) abundances at ambient concentration levels. The PANs are thermally dissociated and detected as NO2, whose mixing ratios are quantified by optical absorption at 405 nm relative to a reference channel kept at ambient temperature. The effective NO2 absorption cross-section at the diode laser emission wavelength was measured to be 6.1 x 10(-19) cm2 molecule(-1), in excellent agreement with a prediction based on a projection of a high-resolution literature absorption spectrum onto the laser line width. The performance, i.e., accuracy and precision of measurement and matrix effects, of the new 405 nm thermal dissociation cavity ring-down spectrometer was evaluated and compared to that of a 532 nm thermal dissociation cavity ring-down spectrometer using laboratory-generated air samples. The new 405 nm spectrometer was considerably more sensitive and compact than the previously constructed version. The key advantage of laser thermal dissociation cavity ring-down spectroscopy is that the measurement can be considered absolute and does not need to rely on external calibration.

15.
Rev Sci Instrum ; 80(11): 114101, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19947740

RESUMEN

A novel measurement technique, thermal dissociation cavity ring-down spectroscopy (TD-CRDS), for rapid (1 s time resolution) and sensitive (precision approximately 100 parts per trillion by volume (10(-12); pptv)) quantification of total peroxy nitrate (SigmaPN) and total alkyl nitrate (SigmaAN) abundances in laboratory-generated gas mixtures is described. The organic nitrates are dissociated in a heated inlet to produce NO(2), whose concentration is monitored by pulsed-laser CRDS at 532 nm. Mixing ratios are determined by difference relative to a cold inlet reference channel. Conversion of laboratory-generated mixtures of AN in zero air (at an inlet temperature of 450 degrees C) is quantitative over a wide range of mixing ratios (0-100 parts per billion by volume (10(-9), ppbv)), as judged from simultaneous measurements of NO(y) using a commercial NO-O(3) chemiluminescence monitor. Conversion of PN is quantitative up to about 4 ppbv (at an inlet temperature of 250 degrees C); at higher concentrations, the measurements are affected by recombination reactions of the dissociation products. The results imply that TD-CRDS can be used as a generic detector of dilute mixtures of organic nitrates in air at near-ambient concentration levels in laboratory experiments. Potential applications of the TD-CRDS technique in the laboratory are discussed.

16.
Science ; 321(5892): 1059, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18599742

RESUMEN

Molecular chlorine (Cl2) is an important yet poorly understood trace constituent of the lower atmosphere. Although a number of mechanisms have been proposed for the conversion of particle-bound chloride (Cl-) to gas-phase Cl2, the detailed processes involved remain uncertain. Here, we show that reaction of dinitrogen pentoxide (N2O5) with aerosol-phase chloride yields Cl2 at low pH (<2) and should constitute an important halogen activation pathway in the atmosphere.

17.
Phys Chem Chem Phys ; 9(43): 5785-93, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19462574

RESUMEN

The reaction NO3 + NO2 <--> N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...