Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
World Allergy Organ J ; 17(5): 100901, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38638799

RESUMEN

Background: Drug-induced hypersensitivity such as anaphylaxis is an important cause of drug-related morbidity and mortality. Cefaclor is a leading cause of drug induced type I hypersensitivity in Korea, but little is yet known about genetic biomarkers to predict this hypersensitivity reaction. We aimed to evaluate the possible involvement of genes in cefaclor induced type I hypersensitivity. Methods: Whole exome sequencing (WES) and HLA genotyping were performed in 43 patients with cefaclor induced type I hypersensitivity. In addition, homology modeling was performed to identify the binding forms of cefaclor to HLA site. Results: Anaphylaxis was the most common phenotype of cefaclor hypersensitivity (90.69%). WES results show that rs62242177 and rs62242178 located in LIMD1 region were genome-wide significant at the 5 × 10-8 significance level. Cefaclor induced type I hypersensitivity was significantly associated with HLA-DRB1∗04:03 (OR 4.61 [95% CI 1.51-14.09], P < 0.002) and HLA-DRB1∗14:54 (OR 3.86 [95% CI 1.09-13.67], P < 0.002). Conclusion: LIMD1, HLA-DRB1∗04:03 and HLA-DRB1∗14:54 may affect susceptibility to cefaclor induced type I hypersensitivity. Further confirmative studies with a larger patient population should be performed to ascertain the role of HLA-DRB1 and LIMD1 in the development of cefaclor induced hypersensitivity.

2.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37958703

RESUMEN

The emergence of lethal coronaviruses follows a periodic pattern which suggests a recurring cycle of outbreaks. It remains uncertain as to when the next lethal coronavirus will emerge, though its eventual emergence appears to be inevitable. New mutations in evolving SARS-CoV-2 variants have provided resistance to current antiviral drugs, monoclonal antibodies, and vaccines, reducing their therapeutic efficacy. This underscores the urgent need to investigate alternative therapeutic approaches. Sigma receptors have been unexpectedly linked to the SARS-CoV-2 life cycle due to the direct antiviral effect of their ligands. Coronavirus-induced cell stress facilitates the formation of an ER-derived complex conducive to its replication. Sigma receptor ligands are believed to prevent the formation of this complex. Repurposing FDA-approved drugs for COVID-19 offers a timely and cost-efficient strategy to find treatments with established safety profiles. Notably, diphenhydramine, a sigma receptor ligand, is thought to counteract the virus by inhibiting the creation of ER-derived replication vesicles. Furthermore, lactoferrin, a well-characterized immunomodulatory protein, has shown antiviral efficacy against SARS-CoV-2 both in laboratory settings and in living organisms. In the present study, we aimed to explore the impact of sigma receptor ligands on SARS-CoV-2-induced mortality in ACE2-transgenic mice. We assessed the effects of an investigational antiviral drug combination comprising a sigma receptor ligand and an immunomodulatory protein. Mice treated with sigma-2 receptor ligands or diphenhydramine and lactoferrin exhibited improved survival rates and rapid rebound in mass following the SARS-CoV-2 challenge compared to mock-treated animals. Clinical translation of these findings may support the discovery of new treatment and research strategies for SARS-CoV-2.


Asunto(s)
COVID-19 , Receptores sigma , Animales , Ratones , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Lactoferrina , Ligandos , Difenhidramina
3.
Front Med (Lausanne) ; 10: 1213889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901413

RESUMEN

Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) is a predominantly drug-induced disease, with a mortality rate of 15-20%, that engages the expertise of multiple disciplines: dermatology, allergy, immunology, clinical pharmacology, burn surgery, ophthalmology, urogynecology, and psychiatry. SJS/TEN has an incidence of 1-5/million persons per year in the United States, with even higher rates globally. One of the challenges of SJS/TEN has been developing the research infrastructure and coordination to answer questions capable of transforming clinical care and leading to improved patient outcomes. SJS/TEN 2021, the third research meeting of its kind, was held as a virtual meeting on August 28-29, 2021. The meeting brought together 428 international scientists, in addition to a community of 140 SJS/TEN survivors and family members. The goal of the meeting was to brainstorm strategies to support the continued growth of an international SJS/TEN research network, bridging science and the community. The community workshop section of the meeting focused on eight primary themes: mental health, eye care, SJS/TEN in children, non-drug induced SJS/TEN, long-term health complications, new advances in mechanisms and basic science, managing long-term scarring, considerations for skin of color, and COVID-19 vaccines. The meeting featured several important updates and identified areas of unmet research and clinical need that will be highlighted in this white paper.

4.
JCI Insight ; 8(24)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-37676726

RESUMEN

Sjögren's Disease (SjD) is a systemic autoimmune disease characterized by lymphocytic inflammation of the lacrimal and salivary glands (SG), dry eyes and mouth, and systemic symptoms. SARS-CoV-2 may trigger the development or progression of autoimmune diseases. To test this, we used a mouse model of SARS-CoV-2 infection and convalescent patients' blood and SG in order to understand the development of SjD-like autoimmunity after infection. First, SARS-CoV-2-infected human angiotensin-converting enzyme 2 (ACE2) transgenic mice exhibited decreased salivation, elevated antinuclear antibodies (ANA), and lymphocytic infiltration in the lacrimal and SG. The sera from patients with COVID-19 sera showed increased ANA (i.e., anti-SSA [Sjögren's-syndrome-related antigen A]/anti-Ro52 and anti-SSB [SS-antigen B]/anti-La). Male patients showed elevated anti-SSA compared with female patients, and female patients exhibited diverse ANA patterns. SG biopsies from convalescent COVID-19 patients were microscopically similar to SjD SG with focal lymphocytic infiltrates in 4 of 6 patients and 2 of 6 patients exhibiting focus scores of at least 2. Lastly, monoclonal antibodies produced in recovered patients blocked ACE2/spike interaction and cross-reacted with nuclear antigens. Our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD-affected SGs were histologically indistinguishable from convalescent COVID-19 patients. The results implicate that SARS-CoV-2 could be an environmental trigger for SjD.


Asunto(s)
COVID-19 , Síndrome de Sjögren , Humanos , Ratones , Masculino , Femenino , Animales , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2 , Ratones Transgénicos , Fenotipo
5.
J Immunol ; 211(5): 727-734, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486226

RESUMEN

Pre-B cell leukemia homeobox 1 (PBX1) controls chromatin accessibility to a large number of genes in various cell types. Its dominant negative splice isoform, PBX1D, which lacks the DNA and Hox-binding domains, is expressed more frequently in the CD4+ T cells from lupus-prone mice and patients with systemic lupus erythematosus than healthy control subjects. PBX1D overexpression in CD4+ T cells impaired regulatory T cell homeostasis and expanded inflammatory CD4+ T cells. In this study, we showed that PBX1 message expression is downregulated by activation in CD4+ T cells as well as in B cells. PBX1D protein was less stable than the normal isoform, PBX1B, and it is degraded through the ubiquitin-proteasome-dependent pathway. The DNA binding domain lacking in PBX1D has two putative ubiquitin binding sites, K292 and K293, that are predicted to be in direct contact with DNA. Mutation of K292-293 reduced PBX1B stability to a level similar to PBX1D and abrogated DNA binding. In addition, contrary to PBX1B, PBX1D is retained in the cytoplasm without the help of the cofactors MEIS or PREP1, indicating a different requirement for nuclear translocation. Overall, these findings suggest that multiple post-transcriptional mechanisms are responsible for PBX1D loss of function and induction of CD4+ T cell inflammatory phenotypes in systemic lupus erythematosus.


Asunto(s)
Proteínas de Homeodominio , Lupus Eritematoso Sistémico , Ratones , Animales , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Alelos , Isoformas de Proteínas/genética , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , ADN , Ubiquitinas/genética
6.
J Immunol ; 210(8): 1031-1042, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36881872

RESUMEN

Previous studies have shown that cysteine-reactive drug metabolites bind covalently with protein to activate patient T cells. However, the nature of the antigenic determinants that interact with HLA and whether T cell stimulatory peptides contain the bound drug metabolite has not been defined. Because susceptibility to dapsone hypersensitivity is associated with the expression of HLA-B*13:01, we have designed and synthesized nitroso dapsone-modified, HLA-B*13:01 binding peptides and explored their immunogenicity using T cells from hypersensitive human patients. Cysteine-containing 9-mer peptides with high binding affinity to HLA-B*13:01 were designed (AQDCEAAAL [Pep1], AQDACEAAL [Pep2], and AQDAEACAL [Pep3]), and the cysteine residue was modified with nitroso dapsone. CD8+ T cell clones were generated and characterized in terms of phenotype, function, and cross-reactivity. Autologous APCs and C1R cells expressing HLA-B*13:01 were used to determine HLA restriction. Mass spectrometry confirmed that nitroso dapsone-peptides were modified at the appropriate site and were free of soluble dapsone and nitroso dapsone. APC HLA-B*13:01-restricted nitroso dapsone-modified Pep1- (n = 124) and Pep3-responsive (n = 48) CD8+ clones were generated. Clones proliferated and secreted effector molecules with graded concentrations of nitroso dapsone-modified Pep1 or Pep3. They also displayed reactivity against soluble nitroso dapsone, which forms adducts in situ, but not with the unmodified peptide or dapsone. Cross-reactivity was observed between nitroso dapsone-modified peptides with cysteine residues in different positions in the peptide sequence. These data characterize a drug metabolite hapten CD8+ T cell response in an HLA risk allele-restricted form of drug hypersensitivity and provide a framework for structural analysis of hapten HLA binding interactions.


Asunto(s)
Dapsona , Hipersensibilidad a las Drogas , Humanos , Cisteína , Linfocitos T CD8-positivos , Antígenos HLA-B , Péptidos , Haptenos
7.
Microbiol Spectr ; : e0308622, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847516

RESUMEN

In human immunodeficiency virus (HIV) infection, virus replication in and adaptation to the central nervous system (CNS) can result in neurocognitive deficits in approximately 25% of patients with unsuppressed viremia. While no single viral mutation can be agreed upon as distinguishing the neuroadapted population, earlier studies have demonstrated that a machine learning (ML) approach could be applied to identify a collection of mutational signatures within the virus envelope glycoprotein (Gp120) predictive of disease. The S[imian]IV-infected macaque is a widely used animal model of HIV neuropathology, allowing in-depth tissue sampling infeasible for human patients. Yet, translational impact of the ML approach within the context of the macaque model has not been tested, much less the capacity for early prediction in other, noninvasive tissues. We applied the previously described ML approach to prediction of SIV-mediated encephalitis (SIVE) using gp120 sequences obtained from the CNS of animals with and without SIVE with 97% accuracy. The presence of SIVE signatures at earlier time points of infection in non-CNS tissues indicated these signatures cannot be used in a clinical setting; however, combined with protein structural mapping and statistical phylogenetic inference, results revealed common denominators associated with these signatures, including 2-acetamido-2-deoxy-beta-d-glucopyranose structural interactions and high rate of alveolar macrophage (AM) infection. AMs were also determined to be the phyloanatomic source of cranial virus in SIVE animals, but not in animals that did not develop SIVE, implicating a role for these cells in the evolution of the signatures identified as predictive of both HIV and SIV neuropathology. IMPORTANCE HIV-associated neurocognitive disorders remain prevalent among persons living with HIV (PLWH) owing to our limited understanding of the contributing viral mechanisms and ability to predict disease onset. We have expanded on a machine learning method previously used on HIV genetic sequence data to predict neurocognitive impairment in PLWH to the more extensively sampled SIV-infected macaque model in order to (i) determine the translatability of the animal model and (ii) more accurately characterize the predictive capacity of the method. We identified eight amino acid and/or biochemical signatures in the SIV envelope glycoprotein, the most predominant of which demonstrated the potential for aminoglycan interaction characteristic of previously identified HIV signatures. These signatures were not isolated to specific points in time or to the central nervous system, limiting their use as an accurate clinical predictor of neuropathogenesis; however, statistical phylogenetic and signature pattern analyses implicate the lungs as a key player in the emergence of neuroadapted viruses.

8.
PLoS One ; 18(1): e0276700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36649279

RESUMEN

COVID-19 is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The severity of COVID-19 is highly variable and related to known (e.g., age, obesity, immune deficiency) and unknown risk factors. The widespread clinical symptoms encompass a large group of asymptomatic COVID-19 patients, raising a crucial question regarding genetic susceptibility, e.g., whether individual differences in immunity play a role in patient symptomatology and how much human leukocyte antigen (HLA) contributes to this. To reveal genetic determinants of susceptibility to COVID-19 severity in the population and further explore potential immune-related factors, we performed a genome-wide association study on 284 confirmed COVID-19 patients (cases) and 95 healthy individuals (controls). We compared cases and controls of European (EUR) ancestry and African American (AFR) ancestry separately. We identified two loci on chromosomes 5q32 and 11p12, which reach the significance threshold of suggestive association (p<1x10-5 threshold adjusted for multiple trait testing) and are associated with the COVID-19 susceptibility in the European ancestry (index rs17448496: odds ratio[OR] = 0.173; 95% confidence interval[CI], 0.08-0.36 for G allele; p = 5.15× 10-5 and index rs768632395: OR = 0.166; 95% CI, 0.07-0.35 for A allele; p = 4.25×10-6, respectively), which were associated with two genes, PPP2R2B at 5q32, and LRRC4C at 11p12, respectively. To explore the linkage between HLA and COVID-19 severity, we applied fine-mapping analysis to dissect the HLA association with mild and severe cases. Using In-silico binding predictions to map the binding of risk/protective HLA to the viral structural proteins, we found the differential presentation of viral peptides in both ancestries. Lastly, extrapolation of the identified HLA from the cohort to the worldwide population revealed notable correlations. The study uncovers possible differences in susceptibility to COVID-19 in different ancestral origins in the genetic background, which may provide new insights into the pathogenesis and clinical treatment of the disease.


Asunto(s)
COVID-19 , Predisposición Genética a la Enfermedad , Humanos , COVID-19/epidemiología , COVID-19/genética , Florida , Estudio de Asociación del Genoma Completo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA , SARS-CoV-2 , Blanco/genética , Negro o Afroamericano/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-36582067

RESUMEN

Glucose, amino acids, and free fatty acids are critical nutrients participating in stimulating or regulating the hormone secretion of islets. These nutrients are believed to be metabolized by pancreatic endocrine cells to function. However, recent evidence suggests that taste receptors, which play key roles in the oral cavity to sense glucose (sweet taste), amino acids (umami taste), and free fatty acids (fatty taste), are expressed in pancreatic islet cells and may act to sense these nutrients to regulate pancreatic hormone secretion, including insulin and glucagon. Disorders in these taste receptor pathways in islets may contribute to the pathogenesis of diabetes, or it may influence hyperglycemia, disturbance in amino acid metabolism, or hyperlipidemia. In this review, we su mMarize the expression and hormone-regulating functions of sweet, umami, and fatty taste receptors acting as nutrient sensors in pancreatic islets in vitro and in vivo. We discuss the potential roles of these taste receptor-nutrient sensor pathways in islets targeted to develop therapeutic strategies for diabetes and related disease.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Humanos , Gusto/fisiología , Ácidos Grasos no Esterificados/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Islotes Pancreáticos/metabolismo , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Nutrientes , Insulina/metabolismo , Aminoácidos
10.
medRxiv ; 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36324812

RESUMEN

Objectives: Sjögren's Disease (SjD) is a chronic and systemic autoimmune disease characterized by lymphocytic infiltration and the development of dry eyes and dry mouth resulting from the secretory dysfunction of the exocrine glands. SARS-CoV-2 may trigger the development or progression of autoimmune diseases, as evidenced by increased autoantibodies in patients and the presentation of cardinal symptoms of SjD. The objective of the study was to determine whether SARS-CoV-2 induces the signature clinical symptoms of SjD. Methods: The ACE2-transgenic mice were infected with SARS-CoV-2. SJD profiling was conducted. COVID-19 patients' sera were examined for autoantibodies. Clinical evaluations of convalescent COVID-19 subjects, including minor salivary gland (MSG) biopsies, were collected. Lastly, monoclonal antibodies generated from single B cells of patients were interrogated for ACE2/spike inhibition and nuclear antigens. Results: Mice infected with the virus showed a decreased saliva flow rate, elevated antinuclear antibodies (ANAs) with anti-SSB/La, and lymphocyte infiltration in the lacrimal and salivary glands. Sera of COVID-19 patients showed an increase in ANA, anti-SSA/Ro52, and anti-SSB/La. The male patients showed elevated levels of anti-SSA/Ro52 compared to female patients, and female patients had more diverse ANA patterns. Minor salivary gland biopsies of convalescent COVID-19 subjects showed focal lymphocytic infiltrates in four of six subjects, and 2 of 6 subjects had focus scores >2. Lastly, we found monoclonal antibodies produced in recovered patients can both block ACE2/spike interaction and recognize nuclear antigens. Conclusion: Overall, our study shows a direct association between SARS-CoV-2 and SjD. Hallmark features of SjD salivary glands were histologically indistinguishable from convalescent COVID-19 subjects. The results potentially implicate that SARS-CoV-2 could be an environmental trigger for SjD. Key Messages: What is already known about this subject?SAR-CoV-2 has a tropism for the salivary glands. However, whether the virus can induce clinical phenotypes of Sjögren's disease is unknown.What does this study add?Mice infected with SAR-CoV-2 showed loss of secretory function, elevated autoantibodies, and lymphocyte infiltration in glands.COVID-19 patients showed an increase in autoantibodies. Monoclonal antibodies produced in recovered patients can block ACE2/spike interaction and recognize nuclear antigens.Minor salivary gland biopsies of some convalescent subjects showed focal lymphocytic infiltrates with focus scores.How might this impact on clinical practice or future developments?Our data provide strong evidence for the role of SARS-CoV-2 in inducing Sjögren's disease-like phenotypes.Our work has implications for how patients will be diagnosed and treated effectively.

11.
Biochem Biophys Res Commun ; 630: 57-63, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36148729

RESUMEN

The 2.6 Å crystal structure of the apo form of Hip1 (hydrolase important for pathogenesis) has been previously reported. However, very little is known about the active site architecture of this M. tuberculosis (Mtb), serine hydrolase drug target. To begin mapping the active site of Hip1, we cocrystallized Hip1 with the irreversible serine protease inhibitor, 4-(2-aminoethyl)-benzenesulfonylfluoride (AEBSF). We chose AEBSF for cocrystallization with Hip1 since the similar inhibitor, phenylmethylsulfonyl fluoride (PMSF), interestingly exhibited no activity against Hip1. We obtained crystals that diffracted to 2.1 Å but to our bewilderment, we did not observe any electron density for the inhibitor in the omit map for the Hip1-AEBSF complex. Rather, in the active site, dehydroalanine (dAla) was found to occupy the expected position of the catalytic Ser228, thus yielding anhydrohip1. Here we present a comparative analysis of the crystal structures of anhydrohip1 and Hip1 and provide a mechanism for the conversion of the enzyme to the anhydro-form through reaction with AEBSF. With the aid of molecular docking, we propose an explanation for the differential inhibition of Hip1 by AEBSF and PMSF. We also present a preliminary definition of the S1 and S2 pockets of the protease's active site and propose a mechanism for a ligand-induced conformational change within the S2 pocket. Finally, we expand upon the previous demarcation of the putative lipid binding pocket in the α-domain of the enzyme. We believe that this detailed analysis of the structures of anhydrohip1 and Hip1 provides valuable information useful for the structure-based drug design of novel Hip1-directed Mtb therapeutics.


Asunto(s)
Mycobacterium tuberculosis , Cristalografía por Rayos X , Ligandos , Lípidos , Simulación del Acoplamiento Molecular , Fluoruro de Fenilmetilsulfonilo , Serina , Serina Proteasas/metabolismo , Inhibidores de Serina Proteinasa , Sulfonas
12.
Clin Chim Acta ; 534: 71-76, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810800

RESUMEN

It is well recognized that chronic low-grade systemic inflammation and autoimmunity contribute to the pathogenesis of metabolic syndrome, its associated diseases (e.g. type 2 diabetes, non-alcoholic fatty liver disease) and type 1 diabetes, respectively. Consequently, anti-inflammatory agents might play a role in managing these immune associated metabolic diseases. Alpha-1 antitrypsin (AAT), an endogenous acute phase protein being used for treatment of AAT deficiency (a rare genetic disease), has multiple functions including anti-inflammatory, immunomodulatory, anti-apoptosis and cytoprotective effects. In this review, we summarized basic and clinical studies that reported potential therapeutic role of AAT in metabolic syndrome associated diseases and type 1 diabetes. Studies that demonstrated AAT had the possibility to be used as a novel biomarker to predict these immune associated metabolic diseases were also included.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Deficiencia de alfa 1-Antitripsina , Biomarcadores , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Inflamación/complicaciones , Síndrome Metabólico/complicaciones , Síndrome Metabólico/tratamiento farmacológico , alfa 1-Antitripsina/uso terapéutico , Deficiencia de alfa 1-Antitripsina/tratamiento farmacológico
13.
Physiol Rep ; 10(12): e15358, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748317

RESUMEN

We previously identified a peptide derived from human fibroblast growth factor 7 (FGF7p) that blocks urothelial apoptosis similar to full-length FGF7, although effects of FGF7p on urothelial repair are unknown. Also, while urothelial AKT activation downstream of FGF7p correlated with the anti-apoptotic effects, we have not directly interrogated the role of AKT in mediating the cytoprotection. Our goal was to assess effects of FGF7p on urothelial repair and the role of AKT signaling in mediating the cytoprotective effects of FGF7p. We performed hematoxylin and eosin (H&E), TUNEL, and/or immunofluorescence (IF) staining for various markers in FGF7p-treated mice 28 days after giving cyclophosphamide or after co-administering a systemic AKT antagonist with FGF7p 24 h after cyclophosphamide. Vehicle-treated and injured mice had hyperplastic urothelium, incomplete return of mature superficial cell markers, ongoing proliferation, and continued presence of basal progenitor markers 28 days after injury; conversely, FGF7p-treated mice had normal numbers of urothelial cell layers, nearly complete return of superficial cell markers, limited proliferation and fewer basal progenitor cells 28 days post-injury. Vehicle-treated mice also had ectopic lumenal basal progenitor cell markers, while FGF7p had none 28 days after cyclophosphamide. Co-administration of an AKT inhibitor largely abrogated FGF7p-driven AKT activation and cytoprotection in urothelium 24 h after injury. Thus, FGF7p drives faster and higher fidelity urothelial repair by limiting apoptotic injury via AKT signaling, similar to full-length FGF7. Finally, FGF7p is much less expensive to synthesize and has a longer shelf life and higher purity than FGF7.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Urotelio , Animales , Apoptosis , Ciclofosfamida/farmacología , Citoprotección , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Urotelio/metabolismo
14.
Physiol Rep ; 10(7): e15241, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388988

RESUMEN

Although full-length fibroblast growth factor 7 (FGF7) blocks cyclophosphamide-induced urothelial apoptosis in mice, limitations include high production costs because of its large size. We previously identified a small peptide derived from FGF2 that mitigated acute radiation syndrome as well as full-length FGF2. Based on the sequence of the FGF2 peptide, we synthesized a corresponding 19 amino acid FGF7 peptide (FGF7p). Our objectives were to determine if systemic FGF7p triggered the downstream targets and protected against cyclophosphamide bladder injury similar to full-length FGF7. We administered FGF7p or vehicle subcutaneously (SQ) to mice subjected to no injury or intraperitoneal (IP) cyclophosphamide and harvested bladders 1 day after injury. We then performed hematoxylin and eosin, TUNEL and immunofluorescence (IF) staining. In uninjured mice, a 20 mg/kg threshold FGF7p dose induced expression of phosphorylated (activated) FRS2α (pFRS2α), and pAKT in urothelium (consistent with cytoprotective effects of FGF7). We then gave FGF7p (20 mg/kg) or vehicle at 72 and 48 h prior to cyclophosphamide. One day after injury, TUNEL staining revealed many more apoptotic urothelial cells with vehicle treatment versus FGF7p treatment. IF for pAKT and readouts of two anti-apoptotic AKT targets (BAD and mTORC1) revealed minimal staining with vehicle treatment, but strong urothelial expression for all markers with FGF7p treatment. In conclusion, FGF7p appears to block bladder urothelial apoptosis via AKT and its targets, similar to FGF7. FGF7p is much more inexpensive to make and has a longer shelf life and higher purity than FGF7.


Asunto(s)
Vejiga Urinaria , Urotelio , Animales , Ciclofosfamida/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Factor 7 de Crecimiento de Fibroblastos/farmacología , Ratones , Péptidos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vejiga Urinaria/metabolismo , Urotelio/metabolismo
15.
J Med Virol ; 94(7): 3192-3202, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35307848

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) has raised questions regarding vaccine protection against SARS-CoV-2 infection, transmission, and ongoing virus evolution. Twenty-three mildly symptomatic "vaccination breakthrough" infections were identified as early as January 2021 in Alachua County, Florida, among individuals fully vaccinated with either the BNT162b2 (Pfizer) or the Ad26 (Janssen/J&J) vaccines. SARS-CoV-2 genomes were successfully generated for 11 of the vaccine breakthroughs, and 878 individuals in the surrounding area and were included for reference-based phylogenetic investigation. These 11 individuals were characterized by infection with VOCs, but also low-frequency variants present within the surrounding population. Low-frequency mutations were observed, which have been more recently identified as mutations of interest owing to their location within targeted immune epitopes (P812L) and association with increased replicative capacity (L18F). We present these results to posit the nature of the efficacy of vaccines in reducing symptoms as both a blessing and a curse-as vaccination becomes more widespread and self-motivated testing reduced owing to the absence of severe symptoms, we face the challenge of early recognition of novel mutations of potential concern. This case study highlights the critical need for continued testing and monitoring of infection and transmission among individuals regardless of vaccination status.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Filogenia , SARS-CoV-2/genética
16.
J Clin Med ; 11(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35330015

RESUMEN

Sjögren's syndrome (SjS) is characterized by lymphocytic infiltration and the dysfunction of the salivary and lacrimal glands. The autoimmune response is driven by the effector T cells and their cytokines. The activation of the effector helper T cells is mediated by autoantigen presentation by human leukocyte antigen (HLA) class II molecules of antigen-presenting cells. Studies using familial aggregation, animal models, and genome-wide association demonstrate a significant genetic correlation between specific risk HLAs and SjS. One of the key HLA alleles is HLA-DRB1*0301; it is one of the most influential associations with primary SjS, having the highest odds ratio and occurrence across different ethnic groups. The specific autoantigens attributed to SjS remain elusive, especially the specific antigenic epitopes presented by HLA-DRB1*0301. This study applied a high throughput in silico mapping technique to identify antigenic epitopes of known SjS autoantigens presented by high-risk HLAs. Furthermore, we identified specific binding HLA-DRB1*0301 epitopes using structural modeling tools such as Immune Epitope Database and Analysis Resource IEDB, AutoDock Vina, and COOT. By deciphering the critical epitopes of autoantigens presented by HLA-DRB1*0301, we gain a better understanding of the origin of the antigens, determine the T cell receptor function, learn the mechanism of disease progression, and develop therapeutic applications.

17.
Life Sci ; 288: 120182, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843735

RESUMEN

BACKGROUND: Sjögren's syndrome (SjS) is an autoimmune disease with a strong genetic association. To date, no vaccine or therapeutic agent exists to cure SjS, and patients must rely on lifelong therapies to treat symptoms. Human leukocyte antigens (HLA) are primary susceptibility loci that form the genetic basis for many autoimmune diseases, including SjS. In this study, we sought to determine whether blocking MHC class II IAg7 antigen presentation in the NOD mouse would alleviate SjS by preventing the recognition of autoantigens by pathogenic T cells. METHODS: Mapping of the antigenic epitopes of Ro60 autoantigen to IAg7 of the NOD mice was performed using structural modeling and in-vitro stimulation. Tetraazatricyclo-dodecane (TATD) and 8-Azaguanine (8-Aza) were previously identified as potential binders to IAg7 of the NOD mice using in silico drug screening. Mice were treated with 20mgs/kg via IP every day five days/week for 23 weeks. Disease profiling was conducted. FINDINGS: Specific peptides of Ro60 autoantigen were identified to bind to IAg7 and stimulated splenocytes of the NOD mice. Treating NOD mice with TATD or 8-Azaguanine alleviated SjS symptoms by improving salivary and lacrimal gland secretory function, decreasing the levels of autoantibodies, and reducing the severity of lymphocytic infiltration in the salivary and lacrimal glands. INTERPRETATION: This study presents a novel therapeutic approach for SjS by identifying small molecules capable of inhibiting T cell response via antigen-specific presentation. FUNDING: CQN is supported financially in part by PHS grants AI130561, DE026450, and DE028544 from the National Institutes of Health.


Asunto(s)
Alcanos/química , Presentación de Antígeno/inmunología , Azaguanina/farmacología , Antígenos de Histocompatibilidad Clase II/química , Compuestos Policíclicos/farmacología , Síndrome de Sjögren/tratamiento farmacológico , Animales , Antimetabolitos Antineoplásicos/farmacología , Femenino , Antígenos de Histocompatibilidad Clase II/inmunología , Ratones , Ratones Endogámicos NOD , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/patología
18.
Biochem Biophys Res Commun ; 586: 87-92, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34837837

RESUMEN

There is an urgent need to understand the functional effects of mutations in emerging variants of SARS-CoV-2. Variants of concern (alpha, beta, gamma and delta) acquired four patterns of spike glycoprotein mutations that enhance transmissibility and immune evasion: 1) mutations in the N-terminal domain (NTD), 2) mutations in the Receptor Binding Domain (RBD), 3) mutations at interchain contacts of the spike trimer, and 4) furin cleavage site mutations. Most distinguishing mutations among variants of concern are exhibited in the NTD, localized to sites of high structural flexibility. Emerging variants of interest such as mu, lambda and C.1.2 exhibit the same patterns of mutations as variants of concern. There is a strong likelihood that SARS-CoV-2 variants will continue to emerge with mutations in these defined patterns, thus providing a basis for the development of next line antiviral drugs and vaccine candidates.


Asunto(s)
COVID-19/virología , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , COVID-19/inmunología , COVID-19/transmisión , Evolución Molecular , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Humanos , Modelos Moleculares , Pandemias , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología
19.
Viruses ; 15(1)2022 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-36680105

RESUMEN

Evidence suggests that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein interacts with host coreceptors that participate in viral entry. Resolving the identity of coreceptors has important clinical implications as it may provide the basis for the development of antiviral drugs and vaccine candidates. The majority of characteristic mutations in variants of concern (VOCs) have occurred in the NTD and receptor binding domain (RBD). Unlike the RBD, mutations in the NTD have clustered in the most flexible parts of the spike protein. Many possible coreceptors have been proposed, including various sugars such as gangliosides, sialosides, and heparan sulfate. Protein coreceptors, including neuropilin-1 and leucine-rich repeat containing 15 (LRRC15), are also proposed coreceptors that engage the NTD.


Asunto(s)
COVID-19 , Receptores Virales , Glicoproteína de la Espiga del Coronavirus , Humanos , Antivirales/farmacología , Proteínas de la Membrana , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Receptores Virales/metabolismo
20.
J AIDS Clin Res ; 12(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950525

RESUMEN

Therapeutic pressure by protease inhibitors (PIs) contributes to accumulation of mutations in the HIV type 1 (HIV-1) protease (PR) leading to development of drug resistance with subsequent therapy failure. Current PIs target the active site of PR in a competitive manner. Identification of molecules that exploit non-active site mechanisms of inhibition is essential to overcome resistance to current PIs. Potential non-active site HIV-1 protease (PR) inhibitors (PI) were identified by in silico screening of almost 140,000 molecules targeting the hinge region of PR. Inhibitory activity of best docking compounds was tested in an in vitro PR inhibition biochemical assay. Five compounds inhibited PR from multiple HIV-1 sub-types in vitro and reduced replicative capacity by PI-sensitive or multi-PI resistant HIV-1 variants in human cells ex vivo. Antiviral activity was boosted when combined with Ritonavir, potentially diminishing development of drug resistance, while providing effective treatment for drug resistant HIV-1 variants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...