Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1010306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743410

RESUMEN

The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.

2.
Sci Rep ; 10(1): 15619, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973195

RESUMEN

Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.


Asunto(s)
Acrosoma/fisiología , Actinas/fisiología , AMP Cíclico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Capacitación Espermática , Motilidad Espermática/fisiología , Animales , Bovinos , Masculino , Fosforilación , Transducción de Señal
3.
Mol Hum Reprod ; 23(8): 521-534, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28521061

RESUMEN

STUDY QUESTION: Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? SUMMARY ANSWER: Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. WHAT IS KNOWN ALREADY: In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. STUDY DESIGN, SIZE, DURATION: Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 µM), Gö6983 (PKC inhibitor, 10 µM), PD98059 (ERK-1/2 inhibitor, 30 µM), H89 and KT (PKA inhibitors, 50 µM and 100 nM, respectively), KH7 (sAC inhibitor, 10 µM), BAPTA-AM (intracellular Ca2+ chelator, 50 µM), EGTA (10 µM) and Probenecid (MRPs general inhibitor, 500 µM). In addition, assays for binding to oviductal epithelial cells and IVF were carried out to test the effect of cAMP compared with other known capacitant agents such as heparin (60 µg/ml) and bicarbonate (40 mM). PARTICIPANTS/MATERIALS, SETTING, METHODS: Straws of frozen bovine semen (20-25 × 106 spermatozoa/ml) were kindly provided by Las Lilas, CIALE and CIAVT Artificial Insemination Centers. The methods used in this work include western blot, immunohistochemistry, flow cytometry, computer-assisted semen analysis, live imaging of Ca2+ and fluorescence scanning. At least three independent assays with bull samples of proven fertility were carried. MAIN RESULTS AND THE ROLE OF CHANCE: In the present study, we elucidate the molecular events induced by extracellular cAMP. Our results showed that external cAMP induces sperm capacitation, depending upon the action of PLC. Downstream, this enzyme increased ERK1-2 activation through PKC and elicited a rise in sperm Ca2+ levels (P < 0.01). Moreover, extracellular cAMP-induced capacitation also depended on the activity of sAC and PKA, and increased tyrosine phosphorylation, indicating that the nucleotide exerts a broad range of responses. In addition, extracellular cAMP-induced sperm hyperactivation and concomitantly increased the proportion of spermatozoa with high mitochondrial activity (P < 0.01). Finally, cAMP increased the in vitro fertilization rate compared to control conditions (P < 0.001). LARGE SCALE DATA: None. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study performed with bovine cryopreserved spermatozoa. Studies in other species and with fresh samples are needed to extrapolate these data. WIDER IMPLICATIONS OF THE FINDINGS: These findings strongly suggest an important role of extracellular cAMP in the regulation of the signalling pathways involved in the acquisition of bull sperm fertilizing capability. The data presented here indicate that not only a rise, but also a regulation of cAMP levels is necessary to ensure sperm fertilizing ability. Thus, exclusion of the nucleotide to the extracellular space might be essential to guarantee the achievement of a cAMP tone, needed for all capacitation-associated events to take place. Moreover, the ability of cAMP to trigger such broad and complex signalling events allows us to hypothesize that cAMP is a self-produced autocrine/paracrine factor, and supports the emerging paradigm that spermatozoa do not compete but, in fact, communicate with each other. A precise understanding of the functional competence of mammalian spermatozoa is essential to generate clinical advances in the treatment of infertility and the development of novel contraceptive strategies. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas [PIP0 496 to S.P.-M.], Agencia Nacional de Promoción Científica y Tecológica [PICT 2012-1195 and PICT2014-2325 to S.P.-M., and PICT 2013-2050 to C.D.], Boehringer Ingelheim Funds, and the Swedish Farmers Foundation [SLF-H13300339 to J.M.]. The authors declare there are no conflicts of interests.


Asunto(s)
AMP Cíclico/metabolismo , Transducción de Señal , Capacitación Espermática , Animales , Calcio/metabolismo , Bovinos , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Fertilidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transducción de Señal/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
4.
J Cell Biochem ; 118(11): 4095-4108, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28419524

RESUMEN

During the passage of sperm through the oviduct, spermatozoa bind to the oviductal epithelium and form the oviductal reservoir. This interaction keeps the fertilizing capacity of sperm until ovulation-associated signals induce sperm release from the oviductal epithelium, allowing the transit of spermatozoa to the fertilization site. Fibronectin is a glycoprotein from the extracellular matrix that binds to α5ß1 receptors. Fibronectin has been found to be expressed in the oviduct, whereas α5ß1 has been found to be expressed in the sperm of different species. Fibronectin is involved through α5ß1 in sperm functions. The aim of this work was to study the participation of oviductal fibronectin in the regulation of the sperm-oviduct interaction in cattle. We found that oviductal epithelial cells differentially expressed all mRNA splice variants of fibronectin during the estrous cycle. Fibronectin was localized in the apical region of oviductal epithelial cells and fibronectin levels in the oviductal fluid fluctuated during the estrous cycle. Also, bovine spermatozoa expressed α5ß1. Using in vitro sperm-oviduct co-cultures, we found that spermatozoa were attached to the oviductal epithelium through α5ß1. The incubation of co-cultures with fibronectin induced sperm release from the oviductal cells through α5ß1. The sperm population released from oviductal cells by fibronectin was enriched in motile and capacitated spermatozoa. Based on our in vitro culture system results, we propose that fibronectin and α5ß1 are involved in the sperm-oviduct interaction. Also, an increase in fibronectin levels in the oviductal fluid during the pre-ovulatory period may promote sperm release from the oviductal epithelium in cattle. J. Cell. Biochem. 118: 4095-4108, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Comunicación Celular/fisiología , Células Epiteliales/metabolismo , Ciclo Estral/fisiología , Fibronectinas/metabolismo , Oviductos/metabolismo , Espermatozoides/metabolismo , Animales , Bovinos , Células Epiteliales/citología , Femenino , Masculino , Oviductos/citología , Espermatozoides/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...