Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(24): 5167-5171, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38848136

RESUMEN

Late-stage formation of a sactionine thioether bond connecting a Gly α-carbon and Cys thiol was achieved by Lossen rearrangement of a glycyl hydroxamic acid (GlyHA) residue in a peptide. Lossen rearrangement allowed conversion of GlyHA within a peptide to an N-acyl iminium equivalent, which subsequently reacted with S-acetamidomethyl Cys (Cys(Acm)) in TFA in the presence of guanidine hydrochloride (Gn·HCl) to yield the desired thioether linkage in the final stage.

2.
Bioorg Med Chem Lett ; 109: 129850, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879090

RESUMEN

For small-molecule drugs, lipidation via a cleavable linkage can extend half-life in circulation through interaction with albumin. Here we modified the cysteinylprolyl ester (CPE) system used in peptide thioester synthesis, which normally requires basic conditions, for use as an self-immolative linker and release device for a lipid-gemcitabine conjugate. To improve release under physiological conditions for medical application, a methyl group at the α-position of cysteine on the CPE unit was incorporated in anticipation of the Thorpe-Ingold effect. As a result, Ac-Gly-(α-Me)Cys(SH)-Pro-gemcitabine 11 drastically promoted the release of gemcitabine in comparison with Ac-Gly-Cys(SH)-Pro-gemcitabine 10. Furthermore, in the presence of bovine serum albumin and/or 2-mercaptoethanesulfonic acid, the gentle and continuous release of gemcitabine from the lipid-gemcitabine conjugate 16 was achieved. In addition to gemcitabine, this method could allow high clearance drugs, including nucleic acid and prostacyclin derivatives, to maintain their biological activity long enough to become effective.

3.
Org Lett ; 26(20): 4246-4250, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38738629

RESUMEN

An oxidant-free approach to the synthesis of N-glyoxylyl peptides has been developed that utilizes the Lossen rearrangement of the N-terminal glycyl hydroxamic acid residue. The synthesis proceeds via an intramolecular redox mechanism to yield the glyoxylyl peptides, which are then subjected to various peptide cyclization procedures. The reaction scheme is suitable for oxidation-sensitive moieties including amino acids.


Asunto(s)
Ácidos Hidroxámicos , Oxidación-Reducción , Péptidos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/síntesis química , Péptidos/química , Péptidos/síntesis química , Estructura Molecular , Ciclización
4.
Chemistry ; : e202401003, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683139

RESUMEN

An advanced insulin synthesis is presented that utilizes one-pot/stepwise disulfide bond formation enabled by acid-activated S-protected cysteine sulfoxides in the presence of chloride anion. S-chlorocysteine generated from cysteine sulfoxides reacts with an S-protected cysteine to afford S-sulfenylsulfonium cation, which then furnishes the disulfide or reversely returns to the starting materials depending on the S-protection employed and the reaction conditions. Use of S-acetamidomethyl cysteine (Cys(Acm)) and its sulfoxide (Cys(Acm)(O)) selectively give the disulfide under weak acid conditions in the presence of MgCl2 even if S-p-methoxybenzyl cysteine (Cys(MBzl)) and its sulfoxide (Cys(MBzl)(O)) are also present. In contrast, the S-MBzl pair yields the disulfide under more acidic conditions in the presence of a chloride anion source. These reaction conditions allowed a one-pot insulin synthesis. Additionally, lipidated insulin was prepared by a one-pot disulfide-bonding/lipidation sequence.

5.
ACS Chem Biol ; 19(2): 551-562, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38289037

RESUMEN

CXCL14 is a primordial CXC-type chemokine that transports CpG oligodeoxynucleotides (ODN) into endosomes and lysosomes in dendritic cells, thereby leading to the activation of the Toll-like receptor 9 (TLR9)-mediated innate immune system. However, the underlying molecular mechanism by which the CXCL14-CpG ODN complex enters cells remains elusive. Herein, we describe the chemical synthesis of CXCL14-derived photoaffinity probes and their application to the identification of target receptors for CXCL14 using quantitative proteomics. By utilizing native chemical ligation and maleimide-thiol coupling chemistry, we synthesized site-specifically modified CXCL14-based photoaffinity probes that contain photoreactive 2-aryl-5-carboxytetrazole (ACT) and a hydrazine-labile cleavable linker. CXCL14-based probes were found to be capable of binding CpG ODN to immune cells, whose bioactivities were comparable to native CXCL14. Application of CXCL14-derived probes to quantitative proteomic experiments enabled the identification of dozens of target receptor candidates for CXCL14 in mouse macrophage-derived RAW264.7 cells, and we discovered that low-density lipoprotein receptor-related protein 1 (LRP1) is a novel receptor for CXCL14 by competitive proteome profiling. We further showed that disruption of LRP1 affected the incorporation of the CXCL14-CpG ODN complex in the cells. Overall, this report highlights the power of synthetic CXCL14-derived photoaffinity probes combined with chemical proteomics to discover previously unidentified receptors for CXCL14, which could promote an understanding of the molecular functions of CXCL14 and the elaborate machinery of innate immune systems.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteómica , Animales , Ratones , Oligodesoxirribonucleótidos/química , Lipoproteínas LDL , Quimiocinas CXC
6.
J Pharmacol Sci ; 153(4): 232-242, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973221

RESUMEN

A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Anhidrasa Carbónica IX/genética , Anhidrasa Carbónica IX/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/uso terapéutico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Hipoxia/metabolismo , ARN Interferente Pequeño , Biología Computacional , Neoplasias Pancreáticas
7.
Bioorg Med Chem Lett ; 95: 129484, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37716415

RESUMEN

Hypoxia in cancer is important in the development of cancer-selective medicines. Here, a novel hypoxia-responsible dual-prodrug is described. We designed and synthesized 2-nitroimidazole derivatives which spontaneously release both a PYG inhibitor and gemcitabine under hypoxic conditions. One such derivative, a prodrug 9 was found to be stable against chemical and enzymatic hydrolysis, and upon chemical reduction of the nitro group on imidazole, successfully releases both drugs. In an in vitro proliferation assay using human pancreatic cells, compound 9 exhibited significant anti-proliferative effects in hypoxia but fewer effects in normoxia. Consequently, prodrug 9 should be useful for cancer treatment due to its improved cancer selectivity and potential to overcome drug resistance.

8.
Chemistry ; 29(26): e202300799, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36922350

RESUMEN

A tyrosine (Tyr)- or tryptophan (Trp)-selective metal-free C-H sulfenylation reaction using an acid-activated S-acetamidomethyl cysteine (Cys) sulfoxide, Cys(Acm)(O), has been achieved. The dually protonated intermediate produced from Cys(Acm)(O) under acidic conditions allows the sulfenylation of Tyr. Significantly, the reaction in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) mainly affords a Cys-Tyr-linked peptide even in the presence of Trp residues. In contrast, a Cys-Trp-linked peptide was selectively obtained from the reaction in the presence of guanidine hydrochloride (Gn ⋅ HCl) under acidic conditions. Established Tyr- and Trp-selective sulfenylation methods were used in the Cys-Tyr stapling and Trp lipidation of glucagon-like peptides 1 in a one-pot/stepwise manner. Investigation of the mechanism showed that orbital- and charge-controlled reactions are responsible for the Trp and Tyr selectivity, respectively.


Asunto(s)
Cisteína , Péptidos , Cisteína/química , Péptidos/química , Tirosina/química , Sulfóxidos , Guanidina
9.
Chem Pharm Bull (Tokyo) ; 70(11): 748-764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36328518

RESUMEN

Diverse naturally occurring events relevant to proteins, including processing and post-translational modification, provide significant clues enabling advances in peptide/protein chemistry. Our motivation to synthesize large proteins prompted us to seek scientific bases utilized in synthetic experiments on the intein-mediated protein processing system. This account describes peptide/protein thioester-producing protocols whose design is based on acyl transfer reactions observed in the intein system, and the development of the stimulus-responsive amide cleavage and its application to the modulation of peptide function. Finally, several findings derived from nature-inspired research efforts, including peptide mimetic synthesis and S-protected cysteine chemistry, are described.


Asunto(s)
Péptidos , Proteínas , Péptidos/farmacología , Cisteína
10.
Biochem Biophys Rep ; 31: 101329, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36032400

RESUMEN

Tocopheryl succinate (Tsuc) is a succinic acid ester of the well-known antioxidant α-tocopherol (T). Tsuc exhibits various biological activities, including tumor growth suppression via activation of cell signaling and prevention of lipid accumulation in mouse adipocyte 3T3-L1 cells. The latter findings suggest that Tsuc may be a drug candidate for the treatment of obesity. However, Tsuc was found to induce apoptosis of normal cells (in addition to cancer cells), demonstrating the need to reduce the cytotoxicity of Tsuc without losing the suppression effect on lipid accumulation. Based on our previous findings, we focused on the ester structure of Tsuc for controlling cytotoxicity. Herein, we examined the cytotoxicity and lipid accumulation suppression effect of various T ester derivatives. We found that the terminal carboxylic group is necessary for suppression of lipid accumulation. We synthesized tocopheryl glutarate (Tglu) and tocopheryl adipate (Tadi) by elongation of carbon atoms 1 and 2 of the dicarboxylic moiety, respectively. Tglu and Tadi did not show any cytotoxicity, and both esters suppressed lipid accumulation, although their suppression activities were weaker than that of Tsuc. Tadi showed a more potent lipid accumulation inhibitory effect than Tglu. Although Tadi inhibited lipogenesis and promoted lipolysis, lipolysis was induced at lower concentrations than inhibition of lipogenesis, suggesting that Tadi mainly affects lipolysis. Taken together, we succeeded in the reduction of cytotoxicity, without loss of the suppression effect on lipid accumulation, by elongation of the dicarboxylic moiety of Tsuc. Tadi may be a promising candidate as an anti-obesity drug.

11.
ACS Med Chem Lett ; 13(7): 1125-1130, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859873

RESUMEN

Lipidation of peptides is a promising means of modification that can improve the therapeutic character of biologically active peptides. Here, a novel lipidation protocol for peptides is described. The C-H sulfenylation of indole in peptides using S-p-methoxybenzyl cysteine sulfoxide under acidic conditions in the presence of ammonium chloride, anisole, and triisopropylsilane enables late-stage tryptophan-selective peptide lipidation. This developed protocol has been used successfully for the lipidation of glucagon-like peptides. Oral glucose tolerance tests in wild-type mice indicated that the resulting lipidated peptides stimulate insulin secretion and exhibit a more long-lasting blood-glucose-lowering effect than a parent nonlipidated peptide.

12.
Chem Pharm Bull (Tokyo) ; 70(5): 316-323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35491186

RESUMEN

The growing interest in artificial proteins modified by synthetic functional units has fueled the demand for their facile preparation. Native chemical ligation (NCL) enables the chemoselective condensation of peptide thioesters with a cysteine-installed synthetic partner and has enjoyed great success in the production of artificial proteins with up to 100-150 residues. A practical method for converting expressed proteins to the corresponding thioesters should lead to significant progress in the NCL-mediated technology. This account describes our recent contributions to the conversion of naturally occurring peptides to the corresponding thioesters by chemical or chemoenzymatic protocols aiming at their future prevalent use in the preparation of sophisticated protein biologics.


Asunto(s)
Péptidos , Proteínas , Cisteína/química , Péptidos/química , Compuestos de Azufre
13.
Cell Chem Biol ; 29(6): 996-1009.e9, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35143772

RESUMEN

Perturbation of endoplasmic reticulum (ER) proteostasis is associated with impairment of cellular function in diverse diseases, especially the function of pancreatic ß cells in type 2 diabetes. Restoration of ER proteostasis by small molecules shows therapeutic promise for type 2 diabetes. Here, using cell-based screening, we report identification of a chemical chaperone-like small molecule, KM04794, that alleviates ER stress. KM04794 prevented protein aggregation and cell death caused by ER stressors and a mutant insulin protein. We also found that this compound increased intracellular and secreted insulin levels in pancreatic ß cells. Chemical biology and biochemical approaches revealed that the compound accumulated in the ER and interacted directly with the ER molecular chaperone BiP. Our data show that this corrector of ER proteostasis can enhance insulin storage and pancreatic ß cell function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Proteostasis , Respuesta de Proteína Desplegada
14.
Chem Commun (Camb) ; 58(17): 2918-2921, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35138311

RESUMEN

Intramolecular S-acylation of a thiol-installed threonine with a thioester unit, followed by S-O acyl transfer and subsequent desulphurisation, allows the synthesis of lactone peptides. A protocol has been developed enabling the cyclisation of a linear peptide, a reaction which has not been achieved by conventional methods.


Asunto(s)
Lactonas/química , Péptidos/síntesis química , Compuestos de Sulfhidrilo/química , Treonina/química , Estructura Molecular , Péptidos/química
15.
Proteomics ; 22(4): e2100144, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34714599

RESUMEN

We developed peptide probes containing a non-hydrolyzable phosphotyrosine mimetic, 4-[difluoro(phosphono)methyl]-L-phenylalanine (F2 Pmp) for the enrichment of protein tyrosine phosphatases (PTPs). We found that different F2 Pmp probes can enrich different PTPs, depending on the probe sequence. Furthermore, proteins containing a Src homology 2 (SH2) domain were enriched together. Importantly, probes containing phosphotyrosine instead of F2 Pmp failed to enrich PTPs due to dephosphorylation during the pulldown step. This enrichment approach using peptides containing F2 Pmp could be a generic tool for tyrosine phosphatome analysis without the use of antibodies.


Asunto(s)
Proteínas Tirosina Fosfatasas , Dominios Homologos src , Secuencia de Aminoácidos , Péptidos/química , Fosfotirosina/química , Proteínas Tirosina Fosfatasas/metabolismo , Tirosina/química
16.
Chem Commun (Camb) ; 57(82): 10763-10766, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34585682

RESUMEN

Cu(II)-mediated C-H sulphenylation or selenylation of Trp indole by a derivative of cysteine or selenocysteine enables access to the tryptathionine unit or its selenium congener. The mechanism of these protocols, which allow macrocyclization of Trp-containing peptides, has been studied.


Asunto(s)
Cobre/química , Péptidos Cíclicos/síntesis química , Selenio/química , Triptófano/química , Secuencia de Aminoácidos , Catálisis , Ciclización , Disulfuros/química , Indoles/química , Lactamas/química , Oxidación-Reducción , Fenotiazinas/química , Pirrolidinonas/química , Tripsina/química
17.
J Immunol ; 207(2): 459-469, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34261665

RESUMEN

Some CXC chemokines, including CXCL14, transport CpG oligodeoxynucleotides (ODNs) into dendritic cells (DCs), thereby activating TLR9. The molecular basis of this noncanonical function of CXC chemokines is not well understood. In this study, we investigated the CpG ODN binding and intracellular transport activities of various CXC chemokines and partial peptides of CXCL14 in mouse bone marrow-derived dendritic cells. CXCL14, CXCL4, and CXCL12 specifically bound CpG ODN, but CXCL12 failed to transport it into cells at low dose. CXCL14 N-terminal peptides 1-47, but not 1-40, was capable of transporting CpG ODN into the cell, resulting in an increase in cytokine production. However, both the 1-47 and 1-40 peptides bound CpG ODN. By contrast, CXCL14 peptides 13-50 did not possess CpG ODN binding capacity or transport activity. The chimeric peptides CXCL12 (1-22)-CXCL14 (13-47) bound CpG ODN but failed to transport it. These results suggest that amino acids 1-12 and 41-47 of CXCL14 are required for binding and intracellular transport of CpG ODN, respectively. We found that an anti-CXCL14 Ab blocked cell-surface binding and internalization of the CpG ODN/CXCL14 complex. On the basis of these findings, we propose that CXCL14 has two functional domains, one involved in DNA recognition and the other in internalization of CXCL14-CpG DNA complex via an unidentified CXCL14 receptor, which together are responsible for eliciting the CXCL14/CpG ODN-mediated TLR9 activation. These domains could play roles in CXCL14-related diseases such as arthritis, obesity-induced diabetes, and various types of carcinoma.


Asunto(s)
Transporte Biológico/fisiología , Quimiocinas CXC/metabolismo , ADN/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Adyuvantes Inmunológicos/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Quimiocina CXCL12/metabolismo , Citocinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Receptor Toll-Like 9/metabolismo
18.
Chemistry ; 27(56): 14092-14099, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34302308

RESUMEN

Covalent linking of side chains provides a method to produce cyclic or stapled peptides that are important in developing peptide-based drugs. A variety of crosslinking formats contribute to fixing the active conformer and prolonging its biological activity under physiological conditions. One format uses the cysteine thiol to participate in crosslinking through nucleophilic thiolate anions or thiyl radicals to form thioether and disulfide bonds. Removal of the S-protection from an S-protected Cys derivative generates the thiol, which functions as a nucleophile. S-Oxidation of a protected Cys allows the formation of a sulfoxide that operates as an umpolung electrophile. Herein, the applicability of S-p-methoxybenzyl Cys sulfoxide (Cys(MBzl)(O)) to the formation of a thioether linkage between tryptophan and Cys has been investigated. The reaction of peptides containing Cys(MBzl)(O) and Trp with trifluoromethanesulfonic acid (TFMSA) or methanesulfonic acid (MSA) in TFA in the presence of guanidine hydrochloride (Gn ⋅ HCl) proceeded to give cyclic or stapled peptides possessing the Cys-Trp thioether linkage. In this reaction, strong acids such as TFMSA or MSA are necessary to activate the sulfoxide. Additionally, Gn ⋅ HCl plays a critical role in producing an electrophilic Cys derivative that combines with the indole by aromatic electrophilic substitution. The findings led us to conclude that the less-electrophilic Cys(MBzl)(O) serves as an acid-activated umpolung of a Cys nucleophile and is useful for S-arylation-mediated peptide cyclization.


Asunto(s)
Cisteína , Sulfóxidos , Ciclización , Péptidos
19.
Angew Chem Int Ed Engl ; 60(21): 11928-11936, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33629482

RESUMEN

Macropinocytosis is a ubiquitous cellular uptake mechanism of peptide-based intracellular delivery. This entry pathway shows promise as a route for the intracellular uptake of biomacromolecules and nanoparticles. In this work, we obtained the 8-residue analogue P4A bearing higher macropinocytosis induction ability. P4A contains vital cysteine residues in its sequence, which immediately reacts with cystine in culture medium to convert into its oxidized forms, including the intramolecularly oxidized form (oxP4A) as the dominant and active species. The conjugate of oxP4A and the membrane lytic peptide LK15 delivered bioactive proteins into cells; notably, this peptide delivered functional proteins fused with a negatively charged protein tag at a significantly reduced amount (up to nanomolar range) without compromising the delivery efficiency and the cellular activities of delivered proteins.


Asunto(s)
Péptidos/metabolismo , Pinocitosis/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Secuencia de Aminoácidos , Cisteína/química , Cisteína/metabolismo , Disulfuros/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Integrasas/metabolismo , Péptidos/química
20.
Chem Pharm Bull (Tokyo) ; 68(12): 1226-1232, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33028801

RESUMEN

Proteins incorporating artificial moieties such as fluorophores and drugs have enjoyed increasing use in chemical biology and drug development research. Preparation of such artificial protein derivatives has relied mainly on native chemical ligation in which peptide/protein thioesters chemoselectively react with N-terminal cysteine (Cys) peptides to afford protein molecules. The protein thioesters derived from expressed proteins represent thioesters that are very useful for the preparation of artificial proteins by native chemical ligation with synthetic peptides with N-terminal Cys. We recently have developed a traceless thioester-producing protocol using carboxypeptidase Y (CPaseY) which is compatible with an expressed protein. The traceless character is ensured by CPaseY-mediated hydrazinolysis of C-terminal Xaa (X)-Cys-proline (Pro)-leucine (Leu)-OH sequence followed by an auto-processing of the Cys-Pro (CP) dipeptide unit, affording the corresponding X-thioester (X-SR). However, hydrazinolysis of the amide bond in the prolyl leucine junction depends significantly on the nature of X. In the case of hydrophobic X residues, the hydrazinolysis overreacts to give several hydrazides while the reaction of hydrophilic X residues proceeds slowly. In this research, we attempted to develop an X-independent CPaseY-mediated protocol and found that the incorporation of a triple CP sequence into the C-terminal end (X-(CP)3-Leu-OH) allows for efficient X-SR formation in a manner that is independent of X.


Asunto(s)
Catepsina A/metabolismo , Hidrazinas/química , Péptidos/química , Proteínas/química , Amidas/química , Secuencia de Aminoácidos , Cisteína/química , Leucina/química , Prolina/química , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA