Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431459

RESUMEN

The slow solvent evaporation approach was used to create a single crystal of (C7H6N3O2)2[ZnCl4] at room temperature. Our compound has been investigated by single-crystal XRD which declares that the complex crystallizes in the monoclinic crystallographic system with the P21/c as a space group. The molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl42- anionic entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types (H-bonds, Cl…Cl, π…π and C-H…π). Hirshfeld's surface study allows us to identify that the dominant contacts in the crystal building are H…Cl/Cl…H contacts (37.3%). FT-IR method was used to identify the different groups in (C7H6N3O2)2[ZnCl4]. Furthermore, impedance spectroscopy analysis in 393 ≤ T ≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius' law. The frequency-temperature dependence of AC conductivity for the studied sample shows one region (Ea = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA, molecular docking simulations were performed at molecular level.

2.
Sci Rep ; 11(1): 20078, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635721

RESUMEN

The bacteriocidal properties of silver nanoparticles (AgNPs) depend on their average diameter (toxicity increases with decreasing diameter). In the present work, we describe novel green chemistry biosynthesis of AgNPs from AgNO3 added to cell-free culture medium of baker's yeast, Saccharomyces cerevisiae, yielding nanoparticles in the range 11-25 nm. However, when yeast was grown in a moderate static magnetic field, AgNPs obtained from the resulting cell-free culture medium, were significantly smaller (2-12 nm) than those obtained without magnetic field. These latter nanoparticles were highly crystalline, stable and near-uniform shape. Furthermore, the antibacterial activity of AgNPs obtained from static magnetic fields were greater than those from control cultures. Static magnetic fields show a promising ability to generate biocidal nanoparticles via this novel green chemistry approach.


Asunto(s)
Antibacterianos/administración & dosificación , Bacterias/efectos de los fármacos , Tecnología Química Verde/métodos , Nanopartículas del Metal/administración & dosificación , Saccharomyces cerevisiae/química , Plata/química , Antibacterianos/química , Sistema Libre de Células , Nanopartículas del Metal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...