Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1280, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379486

RESUMEN

D-site binding protein, DBP, is a clock-controlled transcription factor and drives daily rhythms of physiological processes through the regulation of an array of genes harboring a DNA binding motif, D-box. DBP protein levels show a circadian oscillation with an extremely robust peak/trough ratio, but it is elusive how the temporal pattern is regulated by post-translational regulation. In this study, we show that DBP protein levels are down-regulated by the ubiquitin-proteasome pathway. Analysis using 19 dominant-negative forms of E2 enzymes have revealed that UBE2G1 and UBE2T mediate the degradation of DBP. A proteomic analysis of DBP-interacting proteins and database screening have identified Tumor necrosis factor Receptor-Associated Factor 7 (TRAF7), a RING-type E3 ligase, that forms a complex with UBE2G1 and/or UBE2T. Ubiquitination analysis have revealed that TRAF7 enhances K48-linked polyubiquitination of DBP in cultured cells. Overexpression of TRAF7 down-regulates DBP protein level, while knockdown of TRAF7 up-regulates DBP in cultured cells. Knockout of TRAF7 in NIH3T3 cells have revealed that TRAF7 mediates the time-of-the-day-dependent regulation of DBP levels. Furthermore, TRAF7 has a period-shortening effect on the cellular clock. Together, TRAF7 plays an important role in circadian clock oscillation through destabilization of DBP.


Asunto(s)
Ritmo Circadiano , Ubiquitinación , Animales , Ratones , Células 3T3 NIH , Ritmo Circadiano/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Proteolisis , Relojes Circadianos/genética
2.
Proc Natl Acad Sci U S A ; 121(23): e2316858121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805270

RESUMEN

In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.


Asunto(s)
Factores de Transcripción ARNTL , Proteínas CLOCK , Relojes Circadianos , Proteínas Circadianas Period , Animales , Humanos , Ratones , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/química , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , ADN/metabolismo , Células HEK293 , Mutación , Células 3T3 NIH , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Fosforilación , Unión Proteica , Dominios Proteicos
3.
iScience ; 26(12): 108379, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025769

RESUMEN

Down syndrome (DS) results from trisomy of human chromosome 21 (HSA21), and DS research has been conducted by the use of mouse models. We previously generated a humanized mouse model of DS, TcMAC21, which carries the long arm of HSA21. These mice exhibit learning and memory deficits, and may reproduce neurodevelopmental alterations observed in humans with DS. Here, we performed histologic studies of the TcMAC21 forebrain from embryonic to adult stages. The TcMAC21 neocortex showed reduced proliferation of neural progenitors and delayed neurogenesis. These abnormalities were associated with a smaller number of projection neurons and interneurons. Further, (phospho-)proteomic analysis of adult TcMAC21 cortex revealed alterations in the phosphorylation levels of a series of synaptic proteins. The TcMAC21 mouse model shows similar brain development abnormalities as DS, and will be a valuable model to investigate prenatal and postnatal causes of intellectual disability in humans with DS.

4.
Antioxid Redox Signal ; 37(10-12): 631-646, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35018792

RESUMEN

Aims: The circadian clock oscillates in a cell-autonomous manner with a period of ∼24 h, and the phase is regulated by various time cues such as light and temperature through multiple clock input pathways. We previously found that osmotic and oxidative stress strongly affected the circadian period and phase of cellular rhythms, and triple knockout of apoptosis signal-regulating kinase (ASK) family members, Ask1, Ask2, and Ask3, abolished the phase shift (clock resetting) induced by hyperosmotic pulse treatment. We aimed at exploring a key molecule(s) and signaling events in the clock input pathway dependent on ASK kinases. Results: The phase shift of the cellular clock induced by the hyperosmotic pulse treatment was significantly reduced by combined deficiencies of the clock(-related) genes, Dec1, Dec2, and E4 promoter-binding protein 4 (also known as Nfil3) (E4bp4). In addition, liquid chromatography mass/mass spectrometry (LC-MS/MS)-based proteomic analysis identified hyperosmotic pulse-induced phosphorylation of circadian locomotor output cycles caput (CLOCK) Ser845 in an AKT-dependent manner. We found that AKT kinase was phosphorylated at Ser473 (i.e., activated) in response to the hyperosmotic pulse experiments. Inhibition of mechanistic target of rapamycin (mTOR) kinase by Torin 1 treatment completely abolished the AKT activation, suppressed the phosphorylation of CLOCK Ser845, and blocked the clock resetting induced by the hyperosmotic pulse treatment. Innovation and Conclusions: We conclude that mTOR-AKT signaling is indispensable for the CLOCK Ser845 phosphorylation, which correlates with the clock resetting induced by the hyperosmotic pulse treatment. Immediate early induction of the clock(-related) genes and CLOCK carboxyl-terminal (C-terminal) region containing Ser845 also play important roles in the clock input pathway through redox-sensitive ASK kinases. Antioxid. Redox Signal. 37, 631-646.


Asunto(s)
Ritmo Circadiano , Proteínas Proto-Oncogénicas c-akt , Cromatografía Liquida , Ritmo Circadiano/genética , Presión Osmótica , Proteómica , Sirolimus , Serina-Treonina Quinasas TOR , Espectrometría de Masas en Tándem , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...