Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Diabetologia ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38871836

RESUMEN

AIMS/HYPOTHESIS: Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS: We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS: Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION: [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.

2.
Mol Ther ; 32(8): 2535-2548, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38867450

RESUMEN

Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic ß cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Timidina , Timidilato Sintasa , Humanos , Animales , Ratones , Timidina/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Línea Celular , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Sistemas CRISPR-Cas
3.
Diabetologia ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743124

RESUMEN

AIMS/HYPOTHESIS: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS: To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS: Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION: Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY: Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).

4.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775154

RESUMEN

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of ß cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human ß cell line EndoC-ßH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LßT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic ß cells and pituitary gonadotropes.


Asunto(s)
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Humanos , Animales , Ratones , Masculino , Gonadotrofos/metabolismo , Femenino , Sitios de Empalme de ARN/genética , Línea Celular , Insulina/metabolismo , Hermanos , Exones/genética , Proteínas de Unión al GTP rab3/metabolismo , Proteínas de Unión al GTP rab3/genética , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/patología
5.
Diabetes ; 73(7): 1127-1139, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38603470

RESUMEN

Pluripotent stem cell-derived islets (SC-islets) have emerged as a new source for ß-cell replacement therapy. The function of human islet transplants is hampered by excessive cell death posttransplantation; contributing factors include inflammatory reactions, insufficient revascularization, and islet amyloid formation. However, there is a gap in knowledge of the engraftment process of SC-islets. In this experimental study, we investigated the engraftment capability of SC-islets at 3 months posttransplantation and observed that cell apoptosis rates were lower but vascular density was similar in SC-islets compared with human islets. Whereas the human islet transplant vascular structures were a mixture of remnant donor endothelium and ingrowing blood vessels, the SC-islets contained ingrowing blood vessels only. Oxygenation in the SC-islet grafts was twice as high as that in the corresponding grafts of human islets, suggesting better vascular functionality. Similar to the blood vessel ingrowth, reinnervation of the SC-islets was four- to fivefold higher than that of the human islets. Both SC-islets and human islets contained amyloid at 1 and 3 months posttransplantation. We conclude that the vascular and neural engraftment of SC-islets are superior to those of human islets, but grafts of both origins develop amyloid, with potential long-term consequences.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiología , Animales , Ratones , Apoptosis/fisiología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología , Supervivencia de Injerto/fisiología , Masculino
6.
Am J Hum Genet ; 111(4): 714-728, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579669

RESUMEN

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Asunto(s)
Argininosuccinatoliasa , Aciduria Argininosuccínica , Humanos , Argininosuccinatoliasa/genética , Aciduria Argininosuccínica/genética , Aciduria Argininosuccínica/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Sistemas CRISPR-Cas , Urea , Edición Génica/métodos
7.
Protein Sci ; 33(4): e4949, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38511500

RESUMEN

Primary defects in folding of mutant proinsulin can cause dominant-negative proinsulin accumulation in the endoplasmic reticulum (ER), impaired anterograde proinsulin trafficking, perturbed ER homeostasis, diminished insulin production, and ß-cell dysfunction. Conversely, if primary impairment of ER-to-Golgi trafficking (which also perturbs ER homeostasis) drives misfolding of nonmutant proinsulin-this might suggest bi-directional entry into a common pathological phenotype (proinsulin misfolding, perturbed ER homeostasis, and deficient ER export of proinsulin) that can culminate in diminished insulin storage and diabetes. Here, we've challenged ß-cells with conditions that impair ER-to-Golgi trafficking, and devised an accurate means to assess the relative abundance of distinct folded/misfolded forms of proinsulin using a novel nonreducing SDS-PAGE/immunoblotting protocol. We confirm abundant proinsulin misfolding upon introduction of a diabetogenic INS mutation, or in the islets of db/db mice. Whereas blockade of proinsulin trafficking in Golgi/post-Golgi compartments results in intracellular accumulation of properly-folded proinsulin (bearing native disulfide bonds), impairment of ER-to-Golgi trafficking (regardless whether such impairment is achieved by genetic or pharmacologic means) results in decreased native proinsulin with more misfolded proinsulin. Remarkably, reversible ER-to-Golgi transport defects (such as treatment with brefeldin A or cellular energy depletion) upon reversal quickly restore the ER folding environment, resulting in the disappearance of pre-existing misfolded proinsulin while preserving proinsulin bearing native disulfide bonds. Thus, proper homeostatic balance of ER-to-Golgi trafficking is linked to a more favorable proinsulin folding (as well as trafficking) outcome.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Ratones , Animales , Proinsulina/genética , Proinsulina/química , Pliegue de Proteína , Insulina/química , Retículo Endoplásmico , Homeostasis , Disulfuros/química
8.
Nat Genet ; 55(12): 2075-2081, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973953

RESUMEN

Identifying genes linked to extreme phenotypes in humans has the potential to highlight biological processes not shared with all other mammals. Here, we report the identification of homozygous loss-of-function variants in the primate-specific gene ZNF808 as a cause of pancreatic agenesis. ZNF808 is a member of the KRAB zinc finger protein family, a large and rapidly evolving group of epigenetic silencers which target transposable elements. We show that loss of ZNF808 in vitro results in aberrant activation of regulatory potential contained in the primate-specific transposable elements it represses during early pancreas development. This leads to inappropriate specification of cell fate with induction of genes associated with liver identity. Our results highlight the essential role of ZNF808 in pancreatic development in humans and the contribution of primate-specific regions of the human genome to congenital developmental disease.


Asunto(s)
Anomalías Congénitas , Elementos Transponibles de ADN , Proteínas de Unión al ADN , Páncreas , Animales , Humanos , Diferenciación Celular , Genoma Humano , Primates/anomalías , Primates/genética , Proteínas de Unión al ADN/genética , Anomalías Congénitas/genética , Páncreas/anomalías
9.
Cell Rep ; 42(8): 112970, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37556323

RESUMEN

Pancreatic islets regulate blood glucose homeostasis through the controlled release of insulin; however, current metabolic models of glucose-sensitive insulin secretion are incomplete. A comprehensive understanding of islet metabolism is integral to studies of endocrine cell development as well as diabetic islet dysfunction. Human pluripotent stem cell-derived islets (SC-islets) are a developmentally relevant model of human islet function that have great potential in providing a cure for type 1 diabetes. Using multiple 13C-labeled metabolic fuels, we demonstrate that SC-islets show numerous divergent patterns of metabolite trafficking in proposed insulin release pathways compared with primary human islets but are still reliant on mitochondrial aerobic metabolism to derive function. Furthermore, reductive tricarboxylic acid cycle activity and glycolytic metabolite cycling occur in SC-islets, suggesting that non-canonical coupling factors are also present. In aggregate, we show that many facets of SC-islet metabolism overlap with those of primary islets, albeit with a retained immature signature.

10.
iScience ; 26(3): 106172, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876139

RESUMEN

The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.

11.
Nat Commun ; 13(1): 6363, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289205

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic ß-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in ß-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in ß-cell development and support TYK2 inhibition in adult ß-cells as a potent therapeutic target to halt T1D progression.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinas , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Insulinas/metabolismo , Interferón-alfa/farmacología , Interferón-alfa/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , TYK2 Quinasa/genética , TYK2 Quinasa/metabolismo , Células Secretoras de Insulina
12.
STAR Protoc ; 3(4): 101711, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36136756

RESUMEN

We present here a robust and reliable protocol by which to differentiate pancreatic islet-like aggregates (SC-islets) from human pluripotent stem cells. The 7-stage protocol mimics developmental patterning factors that induce endocrine lineage formation and spans monolayer, microwell, and aggregate suspension culture. The SC-islets demonstrate dynamic glucose-sensitive insulin secretion and an endocrine cell composition similar to those of primary human islets. SC-islets generated using this optimized protocol are suitable for in vitro modeling of islet cell pathophysiology and therapeutic applications. For complete details on the use and execution of this protocol, please refer to Balboa et al. (2022).


Asunto(s)
Islotes Pancreáticos , Células Madre Pluripotentes , Humanos , Diferenciación Celular/fisiología , Glucosa/metabolismo , Secreción de Insulina
13.
Differentiation ; 128: 83-100, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36114074

RESUMEN

Nuclear receptor subfamily 5 group A member 1 (NR5A1) encodes steroidogenic factor 1 (SF1), a key regulatory factor that determines gonadal development and coordinates endocrine functions. Here, we have established a stem cell-based model of human gonadal development and applied it to evaluate the effects of NR5A1 during the transition from bipotential gonad to testicular cells. We combined directed differentiation of human induced pluripotent stem cells (46,XY) with activation of endogenous NR5A1 expression by conditionally-inducible CRISPR activation. The resulting male gonadal-like cells expressed several Sertoli cell transcripts, secreted anti-Müllerian hormone and responded to follicle-stimulating hormone by producing sex steroid intermediates. These characteristics were not induced without NR5A1 activation. A total of 2691 differentially expressed genetic elements, including both coding and non-coding RNAs, were detected immediately following activation of NR5A1 expression. Of those, we identified novel gonad-related putative NR5A1 targets, such as SCARA5, which we validated also by immunocytochemistry. In addition, NR5A1 activation was associated with dynamic expression of multiple gonad- and infertility-related differentially expressed genes. In conclusion, by combining targeted differentiation and endogenous activation of NR5A1 we have for the first time, been able to examine in detail the effects of NR5A1 in early human gonadal cells. The model and results obtained provide a useful resource for future investigations exploring the causative reasons for gonadal dysgenesis and infertility in humans.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infertilidad , Humanos , Masculino , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Mutación , Células Madre Pluripotentes Inducidas/metabolismo , Gónadas/metabolismo , Receptores Depuradores de Clase A/genética
14.
Life Sci Alliance ; 5(12)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35948367

RESUMEN

Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human ß-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Diabetes Mellitus Tipo 2/genética , Glucagón/genética , Glucagón/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Serpina E2/metabolismo
15.
Stem Cell Reports ; 17(7): 1743-1756, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35777358

RESUMEN

Embryonic genome activation (EGA) is critical for embryonic development. However, our understanding of the regulatory mechanisms of human EGA is still incomplete. Human embryonic stem cells (hESCs) are an established model for studying developmental processes, but they resemble epiblast and are sub-optimal for modeling EGA. DUX4 regulates human EGA by inducing cleavage-stage-specific genes, while it also induces cell death. We report here that a short-pulsed expression of DUX4 in primed hESCs activates an EGA-like gene expression program in up to 17% of the cells, retaining cell viability. These DUX4-induced cells resembled eight-cell stage blastomeres and were named induced blastomere-like (iBM) cells. The iBM cells showed marked reduction of POU5F1 protein, as previously observed in mouse two-cell-like cells. Finally, the iBM cells were successfully enriched using an antibody against NaPi2b (SLC34A2), which is expressed in human blastomeres. The iBM cells provide an improved model system to study human EGA transcriptome.


Asunto(s)
Blastómeros , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas , Animales , Blastómeros/metabolismo , Desarrollo Embrionario/genética , Femenino , Genes Homeobox , Genoma Humano , Proteínas de Homeodominio/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Ratones , Embarazo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo
16.
iScience ; 25(4): 104137, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402882

RESUMEN

Double homeobox 4 (DUX4) is expressed at the early pre-implantation stage in human embryos. Here we show that induced human DUX4 expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes ZSCAN4 and KHDC1P1. We show that DUX4 is markedly enriched in human zygotes, followed by intense nuclear DUX4 localization preceding and coinciding with minor EGA. DUX4 knockdown in human zygotes led to changes in the EGA transcriptome but did not terminate the embryos. We also show that the DUX4 protein interacts with the Mediator complex via the C-terminal KIX binding motif. Our findings contribute to the understanding of DUX4 as a regulator of the non-coding genome.

17.
Diabetologia ; 65(6): 917-930, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35244743

RESUMEN

The ability to maintain normoglycaemia, through glucose-sensitive insulin release, is a key aspect of postnatal beta cell function. However, terminally differentiated beta cell identity does not necessarily imply functional maturity. Beta cell maturation is therefore a continuation of beta cell development, albeit a process that occurs postnatally in mammals. Although many important features have been identified in the study of beta cell maturation, as of yet no unified mechanistic model of beta cell functional maturity exists. Here, we review recent findings about the underlying mechanisms of beta cell functional maturation. These findings include systemic hormonal and nutritional triggers that operate through energy-sensing machinery shifts within beta cells, resulting in primed metabolic states that allow for appropriate glucose trafficking and, ultimately, insulin release. We also draw attention to the expansive synergistic nature of these pathways and emphasise that beta cell maturation is dependent on overlapping regulatory and metabolic networks.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Animales , Diferenciación Celular , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Mamíferos/metabolismo
18.
Front Endocrinol (Lausanne) ; 13: 837450, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250887

RESUMEN

Congenital hyperinsulinism (CHI) is a severe inherited neonatal disorder characterized by inappropriate insulin secretion caused by genetic defects of the pancreatic beta cells. Several open questions remain in CHI research, such as the optimal treatment for the most common type of CHI, caused by mutations in the genes encoding ATP-sensitive potassium channels, and the molecular mechanisms of newly identified CHI genes. Answering these questions requires robust preclinical models, particularly since primary patient material is extremely scarce and accurate animal models are not available. In this short review, we explain why pluripotent stem cell derived islets present an attractive solution to these issues and outline the current progress in stem-cell based modeling of CHI. Stem cell derived islets enable the study of molecular mechanisms of CHI and the discovery of novel antihypoglycemic drugs, while also providing a valuable model to study the biology of variable functional states of beta cells.


Asunto(s)
Hiperinsulinismo Congénito , Islotes Pancreáticos , Animales , Hiperinsulinismo Congénito/tratamiento farmacológico , Humanos , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Células Madre/metabolismo
19.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35241836

RESUMEN

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Células Madre Pluripotentes , Animales , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Células Madre Pluripotentes/metabolismo
20.
Nat Cell Biol ; 24(2): 148-154, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35165416

RESUMEN

Metabolic characteristics of adult stem cells are distinct from their differentiated progeny, and cellular metabolism is emerging as a potential driver of cell fate conversions1-4. How these metabolic features are established remains unclear. Here we identified inherited metabolism imposed by functionally distinct mitochondrial age-classes as a fate determinant in asymmetric division of epithelial stem-like cells. While chronologically old mitochondria support oxidative respiration, the electron transport chain of new organelles is proteomically immature and they respire less. After cell division, selectively segregated mitochondrial age-classes elicit a metabolic bias in progeny cells, with oxidative energy metabolism promoting differentiation in cells that inherit old mitochondria. Cells that inherit newly synthesized mitochondria with low levels of Rieske iron-sulfur polypeptide 1 have a higher pentose phosphate pathway activity, which promotes de novo purine biosynthesis and redox balance, and is required to maintain stemness during early fate determination after division. Our results demonstrate that fate decisions are susceptible to intrinsic metabolic bias imposed by selectively inherited mitochondria.


Asunto(s)
Células Madre Adultas/metabolismo , Diferenciación Celular , Linaje de la Célula , ADN Mitocondrial/genética , Metabolismo Energético , Genes Mitocondriales , Glándulas Mamarias Humanas/metabolismo , Mitocondrias/metabolismo , Animales , Línea Celular , Proliferación Celular , Senescencia Celular , Femenino , Humanos , Glándulas Mamarias Humanas/citología , Metaboloma , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/genética , Fenotipo , Proteoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...