Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Surg Neurol Int ; 15: 79, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628515

RESUMEN

Background: Brain metastases (BMs) represent the most frequent brain tumors in adults. The identification of key prognostic factors is essential for choosing the therapeutic strategy tailored to each patient. Epilepsy can precede several months of other clinical presentations of BMs. This work aimed to study the impact of epilepsy and other prognostic factors on BMs patients' survival. Methods: This retrospective study included 51 patients diagnosed with BMs and who underwent neurosurgery between 2010 and 2021. The impact of BM features and patient's clinical characteristics on the overall survival (OS) was analyzed through uni- and multivariate analysis. Results: The average OS was 25.98 months and differed according to the histology of the primary tumor. The primary tumor localization and the presence of extracranial metastases had a statistically significant impact on the OS, and patients with single BM showed a superior OS to those with multifocal lesions. The localization of BMs in the temporal lobe correlated with the highest OS. The OS was significantly higher in patients who presented seizures in their clinical onset and in those who had better post-surgical Karnofsky performance status, no post-surgical complications, and who underwent post-surgical treatment. Conclusion: Our study has highlighted prognostically favorable patient and tumor factors. Among those, a clinical onset with epileptic seizures can help identify brain metastasis hitherto silent. This could lead to immediate diagnostic-therapeutic interventions with more aggressive therapies after appropriate multidisciplinary evaluation.

2.
Biomedicines ; 11(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36979717

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults; despite advances in the understanding of GBM pathogenesis, significant achievements in treating this disease are still lacking. The aim of this study was to evaluate the prognostic significance of the extent of surgical resection (EOR), beyond the neoplastic mass, on the overall survival (OS). METHODS: A retrospective review of a single-institution glioblastoma patient database (January 2012-September 2021) was undertaken. The series is composed of 64 patients who underwent surgery at the University Department of Neurosurgery of Ancona; the series was divided into four groups based on the amount of tumor mass excision with the fluid-attenuated inversion recovery (FLAIR) abnormalities (SUPr-supratotal resection, GTR-gross total resection, STR-subtotal resection, BIOPSY). The hypothesis was that the maximal resection of FLAIR abnormalities may improve the overall survival compared to the resection of the visible T1 contrast-enhanced neoplastic area only. RESULTS: In the univariate analysis, SUPr and GTR are correlated with the overall survival (p = 0.001); the percentage of total neoplastic removal threshold conditioning outcome was 90% (p = 0.027). These results were confirmed by the multivariate analysis. CONCLUSIONS: Maximal surgical resection, when feasible, involving areas of FLAIR abnormalities represents an advantageous approach for the OS in GBM patients.

3.
J Appl Physiol (1985) ; 133(4): 945-958, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981730

RESUMEN

This study aims to test the separated and combined effects of mechanoreflex activation and nociception through exercise-induced muscle damage (EIMD) on central and peripheral hemodynamics before and during single passive leg movement (sPLM). Eight healthy young males undertook four experimental sessions, in which a sPLM was performed on the dominant limb while in each specific session the contralateral was: 1) in a resting condition (CTRL), 2) stretched (ST), 3) resting after EIMD called delayed onset muscle soreness (DOMS) condition, or 4) stretched after EIMD (DOMS + ST). EIMD was used to induce DOMS in the following 24-48 h. Femoral blood flow (FBF) was assessed using Doppler ultrasound whereas central hemodynamics were assessed via finger photoplethysmography. Leg vascular conductance (LVC) was calculated as FBF/mean arterial pressure (MAP). RR-intervals were analyzed in the time (root mean squared of successive intervals; RMSSD) and frequency domain [low frequency (LF)/high frequency (HF)]. Blood samples were collected before each condition and gene expression analysis showed increased fold changes for P2X4 and IL1ß in DOMS and DOMS + ST compared with baseline. Resting FBF and LVC were decreased only in the DOMS + ST condition (-26 mL/min and -50 mL/mmHg/min respectively) with decreased RMSSD and increased LF/HF ratio. MAP, HR, CO, and SV were increased in ST and DOMS + ST compared with CTRL. Marked decreases of Δpeaks and AUC were observed for FBF (Δ: -146 mL/min and -265 mL respectively) and LVC (Δ: -8.66 mL/mmHg/min and ±1.7 mL/mmHg/min respectively) all P < 0.05. These results suggest that the combination of mechanoreflex and nociception resulted in decreased vagal tone and concomitant rise in sympathetic drive that led to increases in resting central hemodynamics with reduced limb blood flow before and during sPLM.NEW & NOTEWORTHY Exercise-induced muscle damage (EIMD) is a well-known model to study mechanical hyperalgesia and muscle peripheral nerve sensitizations. The combination of static stretching protocol on the damaged limb extensively increases resting central hemodynamics with reduction in resting limb blood flow and passive leg movement-induced hyperemia. The mechanism underlining these results may be linked to reduction of vagal tone with concomitant increase in sympathetic activity following mechano- and nociceptive activation.


Asunto(s)
Hiperemia , Nocicepción , Cafeína , Hemodinámica/fisiología , Humanos , Masculino , Movimiento/fisiología , Músculo Esquelético/fisiología , Músculos , Mialgia , Flujo Sanguíneo Regional/fisiología
4.
Front Physiol ; 13: 919422, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845993

RESUMEN

This article explains the comprehensive state of the art assessment of sympathetic (SNA) and vagal nerve activity recordings in humans and highlights the precise mechanisms mediating increased SNA and its corresponding presumed clinical determinants and therapeutic potential in the context of chronic obstructive pulmonary disease (COPD). It is known that patients with COPD exhibit increased muscle sympathetic nerve activity (MSNA), as measured directly using intraneural microelectrodes-the gold standard for evaluation of sympathetic outflow. However, the underlying physiological mechanisms responsible for the sympathoexcitation in COPD and its clinical relevance are less well understood. This may be related to the absence of a systematic approach to measure the increase in sympathetic activity and the lack of a comprehensive approach to assess the underlying mechanisms by which MSNA increases. The nature of sympathoexcitation can be dissected by distinguishing the heart rate increasing properties (heart rate and blood pressure variability) from the vasoconstrictive drive to the peripheral vasculature (measurement of catecholamines and MSNA) (Graphical Abstract Figure 1). Invasive assessment of MSNA to the point of single unit recordings with analysis of single postganglionic sympathetic firing, and hence SNA drive to the peripheral vasculature, is the gold standard for quantification of SNA in humans but is only available in a few centres worldwide because it is costly, time consuming and requires a high level of training. A broad picture of the underlying pathophysiological determinants of the increase in sympathetic outflow in COPD can only be determined if a combination of these tools are used. Various factors potentially determine SNA in COPD (Graphical Abstract Figure 1): Obstructive sleep apnoea (OSA) is highly prevalent in COPD, and leads to repeated bouts of upper airway obstructions with hypoxemia, causing repetitive arousals. This probably produces ongoing sympathoexcitation in the awake state, likely in the "blue bloater" phenotype, resulting in persistent vasoconstriction. Other variables likely describe a subset of COPD patients with increase of sympathetic drive to the heart, clinically likely in the "pink puffer" phenotype. Pharmacological treatment options of increased SNA in COPD could comprise beta blocker therapy. However, as opposed to systolic heart failure a similar beneficial effect of beta blocker therapy in COPD patients has not been shown. The point is made that although MSNA is undoubtedly increased in COPD (probably independently from concomitant cardiovascular disease), studies designed to determine clinical improvements during specific treatment will only be successful if they include adequate patient selection and translational state of the art assessment of SNA. This would ideally include intraneural recordings of MSNA and-as a future perspective-vagal nerve activity all of which should ideally be assessed both in the upright and in the supine position to also determine baroreflex function.

5.
Front Cardiovasc Med ; 9: 866957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463766

RESUMEN

The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.

6.
Mediterr J Hematol Infect Dis ; 14(1): e2022012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35070219

RESUMEN

BACKGROUND: Italy has been one of the countries most affected by the SARS-CoV-2 pandemic, and the regional healthcare system has had to quickly adapt its organization to meet the needs of infected patients. This has led to a drastic change in the routine management of non-communicable diseases with a potential long-term impact on patient health care. Therefore, we investigated the management of non-COVID-19 patients across all medical specialities in Italy. METHODS: A PRISMA guideline-based systematic review of the literature was performed using PubMed, Embase, and Scopus, restricting the search to the main outbreak period in Italy (from February 20 to June 25 2020). We selected articles in English or Italian that detailed changes in the Italian hospital care for non-COVID-19 patients due to the pandemic. Our keywords included all medical specialities combined with our geographical focus (Italy) and COVID-19. RESULTS: Of the 4643 potentially eligible studies identified by the search, 247 were included. A decrease in the management of emergencies in non-COVID patients was found together with an increase in mortality. Similarly, non-deferrable conditions met a tendency toward decreased diagnosis. All specialities have been affected by the re-organization of healthcare provision in the hub-and-spoke system and have benefited from telemedicine. CONCLUSIONS: Our work highlights the changes in the Italian public healthcare system to tackle the developing health crisis due to the COVID-19 pandemic. The findings of our review may be useful to analyse future directions for the healthcare system in the case of new pandemic scenarios.

7.
J Neural Eng ; 18(4)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34153949

RESUMEN

Objective. Bioelectronic medicine is opening new perspectives for the treatment of some major chronic diseases through the physical modulation of autonomic nervous system activity. Being the main peripheral route for electrical signals between central nervous system and visceral organs, the vagus nerve (VN) is one of the most promising targets. Closed-loop VN stimulation (VNS) would be crucial to increase effectiveness of this approach. Therefore, the extrapolation of useful physiological information from VN electrical activity would represent an invaluable source for single-target applications. Here, we present an advanced decoding algorithm novel to VN studies and properly detecting different functional changes from VN signals.Approach. VN signals were recorded using intraneural electrodes in anaesthetized pigs during cardiovascular and respiratory challenges mimicking increases in arterial blood pressure, tidal volume and respiratory rate. We developed a decoding algorithm that combines discrete wavelet transformation, principal component analysis, and ensemble learning made of classification trees.Main results. The new decoding algorithm robustly achieved high accuracy levels in identifying different functional changes and discriminating among them. Interestingly our findings suggest that electrodes positioning plays an important role on decoding performances. We also introduced a new index for the characterization of recording and decoding performance of neural interfaces. Finally, by combining an anatomically validated hybrid neural model and discrimination analysis, we provided new evidence suggesting a functional topographical organization of VN fascicles.Significance. This study represents an important step towards the comprehension of VN signaling, paving the way for the development of effective closed-loop VNS systems.


Asunto(s)
Fenómenos Fisiológicos del Sistema Nervioso , Estimulación del Nervio Vago , Animales , Sistema Nervioso Autónomo , Electrodos , Porcinos , Nervio Vago
8.
J Neural Eng ; 18(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33592597

RESUMEN

Bioelectronic medicine (BM) is an emerging new approach for developing novel neuromodulation therapies for pathologies that have been previously treated with pharmacological approaches. In this review, we will focus on the neuromodulation of autonomic nervous system (ANS) activity with implantable devices, a field of BM that has already demonstrated the ability to treat a variety of conditions, from inflammation to metabolic and cognitive disorders. Recent discoveries about immune responses to ANS stimulation are the laying foundation for a new field holding great potential for medical advancement and therapies and involving an increasing number of research groups around the world, with funding from international public agencies and private investors. Here, we summarize the current achievements and future perspectives for clinical applications of neural decoding and stimulation of the ANS. First, we present the main clinical results achieved so far by different BM approaches and discuss the challenges encountered in fully exploiting the potential of neuromodulatory strategies. Then, we present current preclinical studies aimed at overcoming the present limitations by looking for optimal anatomical targets, developing novel neural interface technology, and conceiving more efficient signal processing strategies. Finally, we explore the prospects for translating these advancements into clinical practice.


Asunto(s)
Sistema Nervioso Autónomo , Procesamiento de Señales Asistido por Computador , Predicción
9.
Cereb Cortex ; 29(1): 91-105, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161354

RESUMEN

The neuronal scaffold protein p140Cap was investigated during hippocampal network formation. p140Cap is present in presynaptic GABAergic terminals and its genetic depletion results in a marked alteration of inhibitory synaptic activity. p140Cap-/- cultured neurons display higher frequency of miniature inhibitory postsynaptic currents (mIPSCs) with no changes of their mean amplitude. Consistent with a potential presynaptic alteration of basal GABA release, p140Cap-/- neurons exhibit a larger synaptic vesicle readily releasable pool, without any variation of single GABAA receptor unitary currents and number of postsynaptic channels. Furthermore, p140Cap-/- neurons show a premature and enhanced network synchronization and appear more susceptible to 4-aminopyridine-induced seizures in vitro and to kainate-induced seizures in vivo. The hippocampus of p140Cap-/- mice showed a significant increase in the number of both inhibitory synapses and of parvalbumin- and somatostatin-expressing interneurons. Specific deletion of p140Cap in forebrain interneurons resulted in increased susceptibility to in vitro epileptic events and increased inhibitory synaptogenesis, comparable to those observed in p140Cap-/- mice. Altogether, our data demonstrate that p140Cap finely tunes inhibitory synaptogenesis and GABAergic neurotransmission, thus regulating the establishment and maintenance of the proper hippocampal excitatory/inhibitory balance.


Asunto(s)
Proteínas Portadoras/fisiología , Neuronas GABAérgicas/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Potenciales Postsinápticos Inhibidores/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA