Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Alemán | MEDLINE | ID: mdl-37208463

RESUMEN

In the view of the German government, the One Health approach is a pioneering compass for inter- and transdisciplinary thinking, networking, and action. To protect the health of humans, animals, plants, and ecosystems, it should always receive attention at all its interfaces and activities. The One Health approach has gained political importance in recent years and is being taken into account in several strategies.This article reports on the current strategies using a One Health approach. These include the German Antibiotic Resistance Strategy, the German Strategy for Adaptation to Climate Change, the global initiative Nature for Health, and the international pandemic agreement, which is currently being drafted and in which prevention also plays an important role. The issues of biodiversity loss and climate protection must be placed in a common context that takes into account the interdependencies of the health status of humans, animals, plants, and ecosystems. By involving relevant disciplines at different levels as a matter of course, we can succeed in making a joint contribution to sustainable development, as required by the United Nations' Agenda 2030. This perspective guides Germany's global engagement in global health policy toward greater stability, freedom, diversity, solidarity, and respect for human rights. Thus, a holistic approach such as One Health can contribute to achieving sustainability and strengthening democratic principles.


Asunto(s)
Ecosistema , Salud Única , Humanos , Alemania , Política de Salud , Salud Global
2.
Isotopes Environ Health Stud ; 56(2): 122-135, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32008378

RESUMEN

East Africa is an underrepresented region in respect of monitoring the stable isotopic composition of precipitation (δ18Oprec and δ2Hprec). In 2017, we collected precipitation samples from ten weather stations located along an altitudinal transect ranging from 1304 to 4375 m a.s.l. The δ18Oprec and δ2Hprec values varied from -8.7 to +3.7 ‰ and -38 to +29 ‰, respectively. The local meteoric water line is characterised by a lower slope, a higher intercept and more positive d-excess values (δ2H = 5.3 ± 0.2 * δ18O + 14.9 ± 0.9) compared to the global meteoric water line. Both altitude and amount of precipitation clearly correlate with our isotope data. However, the δ18Oprec and δ2Hprec values show at the same time a seasonal pattern reflecting rainy versus dry season. More enriched isotope values prevailed shortly after the end of the dry season; more depleted isotope values coincided with high precipitation amounts recorded in May, August and September. Moreover, HYSPLIT trajectories reveal that during the dry season water vapour originates primarily from the Arabian Sea, whereas during the wet season it originates primarily from the Southern Indian Ocean. These findings challenge the traditional amount effect interpretation of paleoclimate isotope records from East Africa and rather point to a previously underestimated source effect.


Asunto(s)
Deuterio/análisis , Monitoreo del Ambiente/métodos , Isótopos de Oxígeno/análisis , Lluvia/química , Altitud , Etiopía , Océano Índico , Estaciones del Año , Tiempo (Meteorología)
3.
Nature ; 568(7750): 88-92, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918402

RESUMEN

Agriculture and the exploitation of natural resources have transformed tropical mountain ecosystems across the world, and the consequences of these transformations for biodiversity and ecosystem functioning are largely unknown1-3. Conclusions that are derived from studies in non-mountainous areas are not suitable for predicting the effects of land-use changes on tropical mountains because the climatic environment rapidly changes with elevation, which may mitigate or amplify the effects of land use4,5. It is of key importance to understand how the interplay of climate and land use constrains biodiversity and ecosystem functions to determine the consequences of global change for mountain ecosystems. Here we show that the interacting effects of climate and land use reshape elevational trends in biodiversity and ecosystem functions on Africa's largest mountain, Mount Kilimanjaro (Tanzania). We find that increasing land-use intensity causes larger losses of plant and animal species richness in the arid lowlands than in humid submontane and montane zones. Increases in land-use intensity are associated with significant changes in the composition of plant, animal and microorganism communities; stronger modifications of plant and animal communities occur in arid and humid ecosystems, respectively. Temperature, precipitation and land use jointly modulate soil properties, nutrient turnover, greenhouse gas emissions, plant biomass and productivity, as well as animal interactions. Our data suggest that the response of ecosystem functions to land-use intensity depends strongly on climate; more-severe changes in ecosystem functioning occur in the arid lowlands and the cold montane zone. Interactions between climate and land use explained-on average-54% of the variation in species richness, species composition and ecosystem functions, whereas only 30% of variation was related to single drivers. Our study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.


Asunto(s)
Agricultura/estadística & datos numéricos , Altitud , Biodiversidad , Ecosistema , Clima Tropical , Animales , Humedad , Microbiología , Plantas , Lluvia , Tanzanía , Temperatura
4.
Environ Monit Assess ; 189(9): 465, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28836041

RESUMEN

Future climate characteristics of the southern Kilimanjaro region, Tanzania, are mainly determined by local land-use and global climate change. Reinforcing increasing dryness throughout the twentieth century, ongoing land transformation processes emphasize the need for a proper understanding of the regional-scale water budget and possible implications on related ecosystem functioning and services. Here, we present an analysis of scintillometer-based evapotranspiration (ET) covering seven distinct habitat types across a massive climate gradient from the colline savanna woodlands to the upper-mountain Helichrysum zone (940 to 3960 m.a.s.l.). Random forest-based mean variable importance indicates an outstanding significance of net radiation (R net) on the observed ET across all elevation levels. Accordingly, topography and frequent cloud/fog events have a dampening effect at high elevations, whereas no such constraints affect the energy and moisture-rich submontane coffee/grassland level. By contrast, long-term moisture availability is likely to impose restrictions upon evapotranspirative net water loss in savanna, which particularly applies to the pronounced dry season. At plot scale, ET can thereby be approximated reasonably using R net, soil heat flux, and to a lesser degree, vapor pressure deficit and rainfall as predictor variables (R 2 0.59 to 1.00). While multivariate regression based on pooled meteorological data from all plots proves itself useful for predicting hourly ET rates across a broader range of ecosystems (R 2 = 0.71), additional gains in explained variance can be achieved when vegetation characteristics as seen from the NDVI are considered (R 2 = 0.87). To sum up, our results indicate that valuable insights into land cover-specific ET dynamics, including underlying drivers, may be derived even from explicitly short-term measurements in an ecologically highly diverse landscape.


Asunto(s)
Altitud , Cambio Climático , Ecosistema , Monitoreo del Ambiente/métodos , Agua/análisis , Lluvia , Estaciones del Año , Suelo , Tanzanía
5.
Nat Commun ; 7: 13736, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004657

RESUMEN

The factors determining gradients of biodiversity are a fundamental yet unresolved topic in ecology. While diversity gradients have been analysed for numerous single taxa, progress towards general explanatory models has been hampered by limitations in the phylogenetic coverage of past studies. By parallel sampling of 25 major plant and animal taxa along a 3.7 km elevational gradient on Mt. Kilimanjaro, we quantify cross-taxon consensus in diversity gradients and evaluate predictors of diversity from single taxa to a multi-taxa community level. While single taxa show complex distribution patterns and respond to different environmental factors, scaling up diversity to the community level leads to an unambiguous support for temperature as the main predictor of species richness in both plants and animals. Our findings illuminate the influence of taxonomic coverage for models of diversity gradients and point to the importance of temperature for diversification and species coexistence in plant and animal communities.


Asunto(s)
Biodiversidad , Altitud , Animales , Ecosistema , Geografía , Modelos Biológicos , Filogenia , Plantas/clasificación , Especificidad de la Especie , Tanzanía , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...