Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 22(3): 976-985, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31424591

RESUMEN

Bacteria and fungi are key components of virtually all natural habitats, yet the significance of fungal-bacterial inhibitory interactions for the ecological and evolutionary dynamics of specific bacterial and fungal populations in natural habitats have been overlooked. More specifically, despite the broad consensus that antibiotics play a key role in providing a fitness advantage to competing microbes, the significance of antibiotic production in mediating cross-kingdom coevolutionary interactions has received relatively little attention. Here, we characterize reciprocal inhibition among Streptomyces and Fusarium populations from prairie soil, and explore antibiotic inhibition in relation to niche overlap among sympatric and allopatric populations. We found evidence for local adaptation between Fusarium and Streptomyces populations as indicated by significantly greater inhibition among sympatric than allopatric populations. Additionally, for both taxa, there was a significant positive correlation between the strength of inhibition against the other taxon and the intensity of resource competition from that taxon among sympatric but not allopatric populations. These data suggest that coevolutionary antagonistic interactions between Fusarium and Streptomyces are driven by resource competition, and support the hypothesis that antibiotics act as weapons in mediating bacterial-fungal interactions in soil.


Asunto(s)
Fusarium/fisiología , Interacciones Microbianas/fisiología , Microbiología del Suelo , Streptomyces/fisiología , Antibacterianos/farmacología , Coevolución Biológica , Ecosistema , Fusarium/genética , Nutrientes/metabolismo , Fenotipo
2.
BMC Genomics ; 20(1): 994, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856709

RESUMEN

BACKGROUND: Bacteria within the genus Streptomyces remain a major source of new natural product discovery and as soil inoculants in agriculture where they promote plant growth and protect from disease. Recently, Streptomyces spp. have been implicated as important members of naturally disease-suppressive soils. To shine more light on the ecology and evolution of disease-suppressive microbial communities, we have sequenced the genome of three Streptomyces strains isolated from disease-suppressive soils and compared them to previously sequenced isolates. Strains selected for sequencing had previously showed strong phenotypes in competition or signaling assays. RESULTS: Here we present the de novo sequencing of three strains of the genus Streptomyces isolated from disease-suppressive soils to produce high-quality complete genomes. Streptomyces sp. GS93-23, Streptomyces sp. 3211-3, and Streptomyces sp. S3-4 were found to have linear chromosomes of 8.24 Mb, 8.23 Mb, and greater than 7.5 Mb, respectively. In addition, two of the strains were found to have large, linear plasmids. Each strain harbors between 26 and 38 natural product biosynthetic gene clusters, on par with previously sequenced Streptomyces spp. We compared these newly sequenced genomes with those of previously sequenced organisms. We see substantial natural product biosynthetic diversity between closely related strains, with the gain/loss of episomal DNA elements being a primary driver of genome evolution. CONCLUSIONS: Long read sequencing data facilitates large contig assembly for high-GC Streptomyces genomes. While the sample number is too small for a definitive conclusion, we do not see evidence that disease suppressive soil isolates are particularly privileged in terms of numbers of biosynthetic gene clusters. The strong sequence similarity between GS93-23 and previously isolated Streptomyces lydicus suggests that species recruitment may contribute to the evolution of disease-suppressive microbial communities.


Asunto(s)
Genoma Bacteriano , Microbiología del Suelo , Streptomyces/genética , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Fenotipo , Análisis de Secuencia de ADN , Streptomyces/aislamiento & purificación , Streptomyces/metabolismo
3.
Genome Announc ; 5(23)2017 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596410

RESUMEN

We report here the high-quality genome sequences of three Streptomyces spp. isolated as part of a long-term study of microbial soil ecology. Streptomyces sp. strain GS93-23 was isolated from naturally disease-suppressive soil (DSS) in Grand Rapids, MN, and Streptomyces sp. strains S3-4 and 3211-3 were isolated from experimental plots in the Cedar Creek Ecosystem Science Reserve (CCESR).

4.
Mol Ecol ; 23(6): 1571-1583, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24148029

RESUMEN

A conceptual model emphasizing direct host-microbe interactions has dominated work on host-associated microbiomes. To understand plant-microbiome associations, however, broader influences on microbiome composition and functioning must be incorporated, such as those arising from plant-plant and microbe-microbe interactions. We sampled soil microbiomes associated with target plant species (Andropogon gerardii, Schizachyrium scoparium, Lespedeza capitata, Lupinus perennis) grown in communities varying in plant richness (1-, 4-, 8- or 16-species). We assessed Streptomyces antagonistic activity and analysed bacterial and Streptomyces populations via 454 pyrosequencing. Host plant species and plant richness treatments altered networks of coassociation among bacterial taxa, suggesting the potential for host plant effects on the soil microbiome to include changes in microbial interaction dynamics and, consequently, co-evolution. Taxa that were coassociated in the rhizosphere of a given host plant species often showed consistent correlations between operational taxonomic unit (OTU) relative abundance and Streptomyces antagonistic activity, in the rhizosphere of that host. However, in the rhizosphere of a different host plant species, the same OTUs showed no consistency, or a different pattern of responsiveness to such biotic habitat characteristics. The diversity and richness of bacterial and Streptomyces communities exhibited distinct relationships with biotic and abiotic soil characteristics. The rhizosphere soil microbiome is influenced by a complex and nested array of factors at varying spatial scales, including plant community, plant host, soil edaphics and microbial taxon and community characteristics.


Asunto(s)
Bacterias/clasificación , Microbiota , Plantas/microbiología , Rizosfera , Microbiología del Suelo , Simbiosis , Antibiosis , Bacterias/genética , Streptomyces/genética , Streptomyces/patogenicidad
5.
Plant Dis ; 95(11): 1370-1377, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30731780

RESUMEN

There is no complete resistance to Sclerotinia sclerotiorum, cause of white mold in dry bean (Phaseolus vulgaris). Variable resistance expression is one problem in screening for improved white mold resistance. With no previous information in the literature, pathogen variation in multisite screening nurseries was evaluated as one cause of diverse resistance expression. In all, 10 isolates of S. sclerotiorum used in greenhouse screening and 146 isolates collected from nine white mold field screening nurseries in major bean production areas in the United States were compared using mycelial compatibility groupings (MCGs) and an aggressiveness test. These 10 greenhouse screening isolates formed six MCGs. Among 156 field and greenhouse isolates, 64 MCGs were identified and 36 of those were each composed of a single unique isolate. Significant differences in isolate aggressiveness were found between some isolates in different MCGs but the isolates within an MCG did not differ in aggressiveness. High isolate variation found within and between field locations could influence the disease phenotype of putative white mold resistant germplasm. We next compared genotype and phenotype of isolates from screening nurseries and those from producer fields. Variability found in and among screening locations did reflect variability found in the four producer fields sampled. White mold resistance screening can be improved by knowledge of isolate genotypic and phenotypic characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...