Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Expert Opin Drug Discov ; : 1-4, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860697
2.
Front Chem ; 11: 1302169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144886

RESUMEN

A quarter of a century ago, designer peptide drugs finally broke through the glass ceiling. Despite the resistance by big pharma, biotechnology companies managed to develop injectable peptide-based drugs, first against orphan or other small volume diseases, and later for conditions affecting large patient populations such as type 2 diabetes. Even their lack of gastrointestinal absorption could be utilized to enable successful oral dosing against chronic constipation. The preference of peptide therapeutics over small molecule competitors against identical medical conditions can be achieved by careful target selection, intrachain and terminal amino acid modifications, appropriate conjugation to stability enhancers and chemical space expansion, innovative delivery and administration techniques and patient-focused marketing strategies. Unfortunately, however, pharmacoeconomical considerations, including the strength of big pharma to develop competing small molecule drugs, have somewhat limited the success of otherwise smart peptide-based therapeutics. Yet, with increasing improvement in peptide drug modification and formulation, these are continuing to gain significant, and growing, acceptance as desirable alternatives to small molecule compounds.

3.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35328571

RESUMEN

Proline-rich antimicrobial peptides (PrAMPs) are promising candidates to treat bacterial infections. The designer peptide ARV-1502 exhibits strong antimicrobial effects against Enterobacteriaceae both in vitro and in vivo. Since the inhibitory effects of ARV-1502 reported for the 70 kDa heat-shock protein DnaK do not fully explain the antimicrobial activity of its 176 substituted analogs, we further studied their effect on the bacterial 70S ribosome of Escherichia coli, a known target of PrAMPs. ARV-1502 analogues, substituted in positions 3, 4, and 8 to 12 (underlined) of the binding motif D3KPRPYLPRP12 with aspartic acid, lysine, serine, phenylalanine or leucine, were tested in a competitive fluorescence polarization (FP) binding screening assay using 5(6)-carboxyfluorescein-labeled (Cf-) ARV-1502 and the 70S ribosome isolated from E. coli BW25113. While their effect on ribosomal protein expression was studied for green fluorescent protein (GFP) in a cell-free expression system (in vitro translation), the importance of known PrAMP transporters SbmA and MdtM was investigated using E. coli BW25113 and the corresponding knockout mutants. The dissociation constant (Kd) of 201 ± 16 nmol/L obtained for Cf-ARV-1502 suggests strong binding to the E. coli 70S ribosome. An inhibitory binding assay indicated that the binding site overlaps with those of other PrAMPs including Onc112 and pyrrhocoricin as well as the non-peptidic antibiotics erythromycin and chloramphenicol. All these drugs and drug candidates bind to the exit-tunnel of the 70S ribosome. Substitutions of the C-terminal fragment of the binding motif YLPRP reduced binding. At the same time, inhibition of GFP expression increased with net peptide charge. Interestingly, the MIC values of wild-type and ΔsbmA and ΔmdtM knockout mutants indicated that substitutions in the ribosomal binding motif altered also the bacterial uptake, which was generally improved by incorporation of hydrophobic residues. In conclusion, most substituted ARV-1502 analogs bound weaker to the 70S ribosome than ARV-1502 underlining the importance of the YLPRP binding motif. The weaker ribosomal binding correlated well with decreased antimicrobial activity in vitro. Substituted ARV-1502 analogs with a higher level of hydrophobicity or positive net charge improved the ribosome binding, inhibition of translation, and bacterial uptake.


Asunto(s)
Antiinfecciosos , Escherichia coli , Antibacterianos/química , Antiinfecciosos/metabolismo , Péptidos Antimicrobianos , Sitios de Unión , Escherichia coli/metabolismo , Prolina/metabolismo , Ribosomas/metabolismo
4.
Front Chem ; 10: 798006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223768

RESUMEN

The antimicrobial peptide (AMP) ARV-1502 was designed based on naturally occurring short proline-rich AMPs, including pyrrhocoricin and drosocin. Identification of chaperone DnaK as a therapeutic target in Escherichia coli triggered intense research on the ligand-DnaK-interactions using fluorescence polarization and X-ray crystallography to reveal the binding motif and characterize the influence of the chaperone on protein refolding activity, especially in stress situations. In continuation of this research, 182 analogs of ARV-1502 were designed by substituting residues involved in antimicrobial activity against Gram-negative pathogens. The peptides synthesized on solid-phase were examined for their binding to E. coli and S. aureus DnaK providing 15 analogs with improved binding characteristics for at least one DnaK. These 15 analogs were distinguished from the original sequence by their increased hydrophobicity parameters. Additionally, the influence of the entire DnaK chaperone system, including co-chaperones DnaJ and GrpE on refolding and ATPase activity, was investigated. The increasingly hydrophobic peptides showed a stronger inhibitory effect on the refolding activity of E. coli chaperones, reducing protein refolding by up to 64%. However, these more hydrophobic peptides had only a minor effect on the ATPase activity. The most dramatic changes on the ATPase activity involved peptides with aspartate substitutions. Interestingly, these peptides resulted in a 59% reduction of the ATPase activity in the E. coli chaperone system whereas they stimulated the ATPase activity in the S. aureus system up to 220%. Of particular note is the improvement of the antimicrobial activity against S. aureus from originally >128 µg/mL to as low as 16 µg/mL. Only a single analog exhibited improved activity over the original value of 8 µg/mL against E. coli. Overall, the various moderate-throughput screenings established here allowed identifying (un)favored substitutions on 1) DnaK binding, 2) the ATPase activity of DnaK, 3) the refolding activity of DnaK alone or together with co-chaperones, and 4) the antimicrobial activity against both E. coli and S. aureus.

5.
Front Physiol ; 12: 688375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276408

RESUMEN

BACKGROUND: Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. METHODS: Male NZO mice, 12-13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. RESULTS: Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. CONCLUSION: Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.

6.
Endocr Relat Cancer ; 28(5): 353-375, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33794502

RESUMEN

Hyperleptinaemia is a well-established therapeutic side effect of drugs inhibiting the androgen axis in prostate cancer (PCa), including main stay androgen deprivation therapy (ADT) and androgen targeted therapies (ATT). Given significant crossover between the adipokine hormone signalling of leptin and multiple cancer-promoting hallmark pathways, including growth, proliferation, migration, angiogenesis, metabolism and inflammation, targeting the leptin axis is therapeutically appealing, especially in advanced PCa where current therapies fail to be curative. In this study, we uncover leptin as a novel universal target in PCa and are the first to highlight increased intratumoural leptin and leptin receptor (LEPR) expression in PCa cells and patients' tumours exposed to androgen deprivation, as is observed in patients' tumours of metastatic and castrate resistant (CRPC) PCa. We also reveal the world-first preclinical evidence that demonstrates marked efficacy of targeted leptin-signalling blockade, using Allo-aca, a potent, specific, and safe LEPR peptide antagonist. Allo-aca-suppressed tumour growth and delayed progression to CRPC in mice bearing LNCaP xenografts, with reduced tumour vascularity and altered pathways of apoptosis, transcription/translation, and energetics in tumours determined as potential mechanisms underpinning anti-tumour efficacy. We highlight LEPR blockade in combination with androgen axis inhibition represents a promising new therapeutic strategy vital in advanced PCa treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/metabolismo , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Leptina , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo
7.
Endocr Relat Cancer ; 27(12): 711-729, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33112829

RESUMEN

Adiponectin is an adipokine originally identified as dysregulated in obesity, with a key role in insulin sensitisation and in maintaining systemic energy balance. However, adiponectin is progressively emerging as having aberrant signalling in multiple disease states, including prostate cancer (PCa). Circulating adiponectin is lower in patients with PCa than in non-malignant disease, and inversely correlates with cancer severity. More severe hypoadiponectinemia is observed in advanced PCa than in organ-confined disease. Given the crossover between adiponectin signalling and several cancer hallmark pathways that influence PCa growth and progression, we hypothesised that targeting dysregulated adiponectin signalling may inhibit tumour growth and progression. We, therefore, aimed to test the efficacy of correcting the hypoadiponectinemia and dysregulated adiponectin signalling observed in PCa, a world-first PCa therapeutic approach, using peptide adiponectin receptor (ADIPOR) agonist ADP355 in mice bearing subcutaneous LNCaP xenografts. We demonstrate significant evidence for PCa growth inhibition by ADP355, which slowed tumour growth and delayed progression of serum PCa biomarker, prostate-specific antigen (PSA), compared to vehicle. ADP355 conferred a significant advantage by increasing time on treatment with a delayed ethical endpoint. mRNA sequencing and protein expression analyses of tumours revealed ADP355 PCa growth inhibition may be through altered cellular energetics, cellular stress and protein synthesis, which may culminate in apoptosis, as evidenced by the increased apoptotic marker in ADP355-treated tumours. Our findings highlight the efficacy of ADP355 in targeting classical adiponectin-associated signalling pathways in vivo and provide insights into the promising future for modulating adiponectin signalling through ADIPOR agonism as a novel anti-tumour treatment modality.


Asunto(s)
Neoplasias de la Próstata/terapia , Receptores de Adiponectina/uso terapéutico , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Desnudos
8.
Pathogens ; 9(7)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610480

RESUMEN

Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal "post-antibiotic era" are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.

9.
Front Chem ; 7: 753, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799234

RESUMEN

The designer proline-rich antimicrobial peptide (PrAMP) Chex1-Arg20 amide (ARV-1502) is active against Gram-negative and Gram-positive pathogens in different murine infection models when administered parenterally and possesses a wide therapeutic index. Here we studied the pharmacokinetics of ARV-1502 for the first time when administered intramuscularly or intravenously (IV) in Sprague Dawley rats and Beagle dogs. First, a specific and robust quantitation method relying on parallel reaction monitoring (PRM) using a high-resolution hybrid quadrupole-Orbitrap mass spectrometer coupled on-line to reversed-phase uHPLC was established and validated. The limit of detection was 2 ng/mL and the limit of quantitation was 4 ng/mL when spiked to pooled rat and dog plasma. When ARV-1502 was administered IV at doses of 75 and 250 µg/kg in dogs and rats, the plasma concentrations were 0.7 and 3.4 µg/mL 2 min post-administration, respectively. ARV-1502 plasma concentrations declined exponentially reaching levels between 2 and 4 ng/mL after 2 h. Intramuscular administration of 0.75 mg/kg in dogs and 2.5 mg/kg in rats resulted in a different pharmacokinetics profile. The plasma concentrations peaked at 15 min post-injection at 1 µg/mL (dogs) and 12 µg/mL (rats) and decreased exponentially within 3 h to 4 and 16 ng/mL, respectively. The initial plasma concentrations of ARV-1502 and the decay timing afterwards indicated that the peptide circulated in the blood stream for several hours, at some point above the minimal inhibitory concentration against multidrug-resistant Enterobacteriaceae, with blood concentrations sufficient to suppress bacterial growth and to modulate the immune system.

10.
Artículo en Inglés | MEDLINE | ID: mdl-31456747

RESUMEN

Many human diseases may benefit from adiponectin replacement therapy, but due to pharmacological disadvantages of the intact protein, druggable options focus on peptidic, and small molecule agonists of the adiponectin receptor. Peptide-based adiponectin replacement drug leads are derived from, or resemble, the active site of globular adiponectin. ADP355, the first-in-class such peptide, exhibits low nanomolar cellular activities, and clinically acceptable efficacies in a series of fibrotic and inflammation-derived diseases. The advantage of small molecule therapies, spearheaded by AdipoRon, is oral availability and extension of utility to a series of metabolic conditions. It is exactly the difficulties in the reliability and readout of the in vitro measures and the wealth of in vivo models that make comparison of the various drug classes complicated, if not impossible. While only a fewer number of maladies could take advantage of adiponectin receptor antagonists, the limited number of these available can be very useful tools in target validation studies. Alternative approaches to direct adiponectin signaling control use upstream adiponectin production inducing therapies but currently these offer relatively limited success compared to direct receptor agonists.

11.
Front Chem ; 6: 359, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186829

RESUMEN

The APO-type proline-arginine-rich host defense peptides exhibit potent in vitro killing parameters against Enterobacteriaceae but not to other bacteria. Because of the excellent in vivo properties against systemic and local infections, attempts are regularly made to further improve the activity spectrum. A C-terminal hydrazide analog of the Chex1-Arg20 amide (ARV-1502) shows somewhat improved minimal inhibitory concentration against Moraxellaceae. Here we compared the activity of the two peptides as well as an inactive dimeric reverse amide analog in a systemic Acinetobacter baumannii infection. Only the narrow spectrum amide derivative reduced the 6-h blood bacterial burden by >2 log10 units reaching statistical significance (p = 0.03 at 5 mg/kg and 0.031 at 2 mg/kg administered intramuscularly). The hydrazide derivative, probably due to stronger activity on cell membranes, lysed erythrocytes at lower concentrations, and caused toxic effects at lower doses (10 mg/kg vs. 25 mg/kg). In a limited study, the amide induced a >5-fold production of the anti-inflammatory cytokine IL-10 over untreated naïve mice and minor increases in the anti-inflammatory IL-4 and pro-inflammatory cytokines TNF-α and IL-6, in blood. The blood of hydrazide-treated mice exhibited significantly lowered levels of IL-10 and slightly decreased IL-4 and TNF-α. These results suggest that the improved efficacy of the narrow-spectrum amide analog is likely associated with increased anti-inflammatory cytokine production and better stimulation of the immune system. Although blood IL-6 and TNF-α levels are frequently used as markers of potential toxicity in drug development, we did not observe any notable increase in mice receiving the toxic polyamide antibiotic colistin.

12.
Front Chem ; 6: 309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30155456

RESUMEN

As monotherapy, modified proline-rich antimicrobial peptides (PrAMPs) protect animals from experimental bacteremia in a dose-dependent manner. We evaluated the in vitro synergy of a modified PrAMP, A3-APO, a dimer, previously shown to inhibit the 70 kDa bacterial heat shock protein DnaK, with imipenem or colistin against two antibiotic-resistant pathogens; a carbapenemase-expressing Klebsiella pneumoniae strain K97/09 and Acinetobacter baumannii (ATCC BAA-1605). Combining antimicrobials resulted in synergy for PrAMP/colistin combination against both K. pneumoniae and A. baumannii (ΣFIC = 0.08 both) and additive activity for the A3-APO/imipenem combination against K. pneumoniae (ΣFIC = 0.53). Chex1-Arg20, (designated as ARV-1502 in preclinical development), the single chain PrAMP monomer of A3-APO, showed synergy with meropenem against a carbapenem-resistant uropathogenic Escherichia coli strain (ΣFIC = 0.38). In a murine bacteremia model using K97/09, A3-APO at 1 mg/kg demonstrated improved survival when co-administered with standard (10 mg/kg) or subtherapeutic (1 mg/kg) doses of colistin at 36 h (p < 0.05). Surprisingly, the survival benefit of A3-APO was augmented when the A3-APO dose was decreased by 50% to 0.5 mg/kg (p < 0.02) in conjunction with a subtherapeutic colistin dose (1 mg/kg). ARV-1502, as monotherapy demonstrated prolonged (>24 h) activity in a mouse Escherichia coli infection assay. Co-treatment with ARV-1502 and subtherapeutic doses of ceftazidime (150 mg/kg) was studied in a mouse model of melioidosis. ARV-1502 provided a 50% improvement in long-term (62 days) survival, but only at the lowest of 3 administered doses; survival advantage was demonstrated at 2.5 mg/kg but not at 5 or 10 mg/kg. The mortality benefit of combination therapies was not routinely accompanied by a parallel decline in blood or tissue bacterial counts in surviving animals, suggesting that the anti-infective activity of the host defense peptides (HDP) is broader than simply bacterial eradication. In fact, the hormetic effect observed in either animal models suggest that low dose HDP treatment may change the dominant mode of action in experimental bacteremia.

13.
Amino Acids ; 49(9): 1647-1651, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28664267

RESUMEN

Host defense peptides are preferably administered as topical therapeutic agents. We have investigated whether peptide A3-APO can enter the circulation when applied to the ear skin. Efficacy of peptide monotherapy as transdermal administration option was assessed in a systemic mouse Acinetobacter baumannii model. A3-APO reduced mortality and demonstrated a statistically significant reduction of blood bacterial counts, regardless whether it was administered prior or after bacterial challenge. The peptidic metabolite of A3-APO was efficacious when applied to the ear or tail.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacteriemia/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/mortalidad , Infecciones por Acinetobacter/patología , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/fisiología , Administración Cutánea , Secuencia de Aminoácidos , Animales , Arginina/química , Bacteriemia/microbiología , Bacteriemia/mortalidad , Bacteriemia/patología , Carga Bacteriana/efectos de los fármacos , Carbapenémicos/farmacología , Colistina/farmacología , Modelos Animales de Enfermedad , Oído , Humanos , Ratones , Prolina/química , Piel/metabolismo , Análisis de Supervivencia
14.
Front Chem ; 5: 42, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28674690

RESUMEN

The preclinical in vitro and in vivo benchmark figures of cationic antimicrobial peptides have to be revisited based on the newly discovered alternative modes of action.

15.
Sci Rep ; 7(1): 4397, 2017 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-28667272

RESUMEN

Skin fibrosis in systemic sclerosis (SSc) is accompanied by attrition of dermal white adipose tissue (dWAT) and reduced levels of circulating adiponectin. Since adiponectin has potent regulatory effects on fibroblasts, we sought to assess adiponectin signaling in SSc skin biopsies, and evaluate fibrosis in mice with adiponectin gain- and loss-of-function mutations. Furthermore, we investigated the effects and mechanism of action of agonist peptides targeting adiponectin receptors in vitro and in vivo. We found that adiponectin pathway activity was significantly reduced in a subset of SSc skin biopsies. Mice lacking adiponectin mounted an exaggerated dermal fibrotic response, while transgenic mice with constitutively elevated adiponectin showed selective dWAT expansion and protection from skin and peritoneal fibrosis. Adiponectin receptor agonists abrogated ex vivo fibrotic responses in explanted normal and SSc fibroblasts and in 3D human skin equivalents, in part by attenuating focal adhesion complex assembly, and prevented and reversed experimentally-induced organ fibrosis in mice. These results implicate aberrant adiponectin pathway activity in skin fibrosis, identifying a novel function for this pleiotropic adipokine in regulation of tissue remodeling. Restoring adiponectin signaling in SSc patients therefore might represent an innovative pharmacological strategy for intractable organ fibrosis.


Asunto(s)
Adiponectina/metabolismo , Fibrosis/metabolismo , Fibrosis/patología , Adiponectina/farmacología , Animales , Biopsia , Modelos Animales de Enfermedad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis/tratamiento farmacológico , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Oligopéptidos/farmacología , Receptores de Adiponectina/metabolismo , Esclerodermia Sistémica/etiología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/patología , Transducción de Señal/efectos de los fármacos , Piel/metabolismo , Piel/patología
16.
Front Chem ; 5: 1, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28154813

RESUMEN

In vivo pharmacokinetics studies have shown that the proline-rich antimicrobial peptide, A3-APO, which is a discontinuous dimer of the peptide, Chex1-Arg20, undergoes degradation to small fragments at positions Pro6-Arg7 and Val19-Arg20. With the aim of minimizing or abolishing this degradation, a series of Chex1-Arg20 analogs were prepared via Fmoc/tBu solid phase peptide synthesis with D-arginine or, in some cases, peptide backbone Nα-methylated arginine, substitution at these sites. All the peptides were tested for antibacterial activity against the Gram-negative bacterium Klebsiella pneumoniae. The resulting activity of position-7 substitution of Chex1-Arg20 analogs showed that arginine-7 is a crucial residue for maintaining activity against K. pneumoniae. However, arginine-20 substitution had a much less deleterious effect on the antibacterial activity of the peptide. Moreover, none of these peptides displayed any cytotoxicity to HEK and H-4-II-E mammalian cells. These results will aid the development of more effective and stable PrAMPs via judicious amino acid substitutions.

17.
Protein Pept Lett ; 24(10): 879-886, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28155618

RESUMEN

Antimicrobial peptides (AMP) inhibit the proliferation of bacteria and frequently protect experimental animals from bacterial challenge. If the mode of action is membrane disintegration, one would expect that AMP can also kill cancer cells whose membrane structure lies between those of normal and bacterial cells. However, an ever-increasing number of reports suggest that AMP, with their newer name, host-defense peptides (HDP), do not directly kill bacteria under in vitro conditions when small molecule antibacterials are bactericidal. The micromolar activity may be suitable for biochemical studies but does not warrant oncology drug development. Nevertheless, as HDP are also documented to act on intracellular targets, the alternative modes of action revive the belief that antiproliferative efficacy can be obtained, indeed supported by a few successful animal efficacy studies. In addition, the passive transport properties of AMP/HDP can be utilized in the intracellular delivery of unrelated cancer drugs. Unfortunately the inherent pro-inflammatory activities of many native and designer HDP lead to oncogenic rather than anti-cancer activities in vitro and in vivo. A critical evaluation of the role of HDP in tumor development with pharmaceutically relevant animal efficacy and toxicity studies are needed before human clinical trials can be designed and initiated.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Proyectos de Investigación , Propiedades de Superficie
18.
Chemistry ; 23(2): 390-396, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-27862429

RESUMEN

Two series of branched tetramers of the proline-rich antimicrobial peptide (PrAMP), Chex1-Arg20, were prepared to improve antibacterial selectivity and potency against a panel of Gram-negative nosocomial pathogens including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa. First, tetramerization was achieved by dithiomaleimide (DTM) conjugation of two C-terminal-cysteine bearing dimers that also incorporated C-terminal peptide chemical modification. DTM-linked tetrameric peptides containing a C-terminal hydrazide moiety on each dimer exhibited highly potent activities in the minimum inhibitory concentration (MIC) range of 0.49-2.33 µm. A second series of tetrameric analogues with C-terminal hydrazide modification was prepared by using alternative conjugation linkers including trans-1,4-dibromo-2-butene, α,α'-dibromo-p-xylene, or 6-bismaleimidohexane to determine the effect of length on activity. Each displayed potent and broadened activity against Gram-negative nosocomial pathogens, particularly the butene-linked tetrameric hydrazide. Remarkably, the greatest MIC activity is against P. aeruginosa (0.77 µm/8 µg mL-1 ) where the monomer is inactive. None of these peptides showed any cytotoxicity to mammalian cells up to 25 times the MIC. A diffusion NMR study of the tetrameric hydrazides showed that the more active antibacterial analogues were those with a more compact structure having smaller hydrodynamic radii. The results show that C-terminal PrAMP hydrazidation together with its rational tetramerization is an effective means for increasing both diversity and potency of PrAMP action.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Animales , Antibacterianos/farmacología , Antibacterianos/toxicidad , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/toxicidad , Línea Celular , Infección Hospitalaria/microbiología , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Hidrocarburos Bromados/química , Maleimidas/química , Dominios Proteicos Ricos en Prolina , Multimerización de Proteína , Ratas
19.
Front Mol Biosci ; 3: 75, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27878121

RESUMEN

[This corrects the article on p. 67 in vol. 3, PMID: 27790618.].

20.
Front Mol Biosci ; 3: 67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27790618

RESUMEN

Experimental and clinical data suggest that pro-angiogenic, pro-inflammatory and mitogenic cytokine leptin can be implicated in ocular neovascularization and other eye pathologies. At least in part, leptin action appears to be mediated through functional interplay with vascular endothelial growth factor (VEGF). VEGF is a potent regulator of neoangiogenesis and vascular leakage with a proven role in conditions such as proliferative diabetic retinopathy, age-related macular degeneration and diabetic macular edema. Accordingly, drugs targeting VEGF are becoming mainstream treatments for these diseases. The crosstalk between leptin and VEGF has been noted in different tissues, but its involvement in the development of eye pathologies is unclear. Leptin is coexpressed with VEGF during ocular neovascularization and can potentiate VEGF synthesis and angiogenic function. However, whether or not VEGF regulates leptin expression or signaling has never been studied. Consequently, we addressed this aspect of leptin/VEGF crosstalk in ocular models, focusing on therapeutic exploration of underlying mechanisms. Here we show, for the first time, that in retinal (RF/6A) and corneal (BCE) endothelial cells, VEGF (100 ng/mL, 24 h) stimulated leptin mRNA synthesis by 70 and 30%, respectively, and protein expression by 56 and 28%, respectively. In parallel, VEGF induced RF/6A and BCE cell growth by 33 and 20%, respectively. In addition, VEGF upregulated chemotaxis and chemokinesis in retinal cells by ~40%. VEGF-dependent proliferation and migration were significantly reduced in the presence of the leptin receptor antagonist, Allo-aca, at 100-250 nmol/L concentrations. Furthermore, Allo-aca suppressed VEGF-dependent long-term (24 h), but not acute (15 min) stimulation of the Akt and ERK1/2 signaling pathways. The efficacy of Allo-aca was validated in the rat laser-induced choroidal neovascularization model where the compound (5 µg/eye) significantly reduced pathological vascularization with the efficacy similar to that of a standard treatment (anti-VEGF antibody, 1 µg/eye). Cumulatively, our results suggest that chronic exposure to VEGF upregulates leptin expression and function. As leptin can in turn activate VEGF, the increased abundance of both cytokines could amplify pro-angiogenic and pro-inflammatory environement in the eye. Thus, combined therapies targeting ObR and VEGF should be considered in the treatment of ocular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...