Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 20(17): e2307615, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38111975

RESUMEN

Transition metal phosphides (TMPs) have been regarded as the prospective anodes for lithium-ion batteries (LIBs). However, their poor intrinsic conductivity and inevitable large volume variation result in sluggish redox kinetics and the collapse of electrode structure during cycling, which substantially hinders their practical use. Herein, an effective composite electrodes design strategy of "assembly and phosphorization" is proposed to construct synergistic N-doped carbon-encapsulated NiCoP@N-C-based composites, employing a metal-organic frameworks (MOFs) as sacrificial hosts. Serving as the anodes for LIBs, one representative P-NCP-NC-600 electrode exhibits high reversible capacity (858.5 mAh g-1, 120 cycles at 0.1 A g-1) and superior long-cycle stability (608.7 mAh g-1, 500 cycles at 1 A g-1). The impressive performances are credited to the synergistic effect between its unique composite structure, electronic properties and ideal composition, which achieve plentiful lithium storage sites and reinforce the structural architecture. By accompanying experimental investigations with theoretical calculations, a deep understanding in the lithium storage mechanism is achieved. Furthermore, it is revealed that a more ideal synergistic effect between NiCoP components and N-doped carbon frameworks is fundamentally responsible for the realization of superb lithium storage properties. This strategy proposes certain instructive significance toward designable high-performance TMP-based anodes for high-energy density LIBs.

2.
Saudi Pharm J ; 31(12): 101829, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37961070

RESUMEN

Plumula nelumbinis, a widely used traditional Chinese medicine known for its calming and nerve-soothing properties, contains essential oil as a primary component. However, research on P. nelumbinis essential oil (PNEO) is limited. This study aimed to investigate PNEO components, network target analysis, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and antioxidant activity of P. nelumbinis from ten different habitats. GC-MS analysis identified 14 compounds in the essential oil, with CP12 (ß-Sitosterol) having the highest concentration. Five compounds were identified for the first time in P. nelumbinis, with three of them reported for the first time in the Nelumbo. Network target analysis revealed 185 potential targets for 11 compounds and GO and KEGG enrichment analyses showed that PNEO was mainly located in the plasma membrane and could regulate a variety of molecular functions. KEGG pathway enrichment analysis revealed that the essential oil was primarily enriched in pathways related to cancer and the nervous system. PNEO demonstrated strong antioxidant activity, with N8 (Fujiannanping) showing the highest ABTS scavenging capacity and N7 (Hunanxiangtan) showing the highest DPPH radical scavenging capacity. Cell experiments showed that CP4, CP5 and CP10 had protective effects against H2O2-induced oxidative damage. The study suggests that P. nelumbinis from different regions may have slightly different pharmacological effects due to the presence of unique compounds, and further research is necessary to explore the potential therapeutic benefits of PNEO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA