Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Nat Commun ; 15(1): 7638, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266515

RESUMEN

Chronic fibrotic tissue disrupts various organ functions. Despite significant advances in therapies, mortality and morbidity due to heart failure remain high, resulting in poor quality of life. Beyond the cardiomyocyte-centric view of heart failure, it is now accepted that alterations in the interstitial extracellular matrix (ECM) also play a major role in the development of heart failure. Here, we show that protein kinase N (PKN) is expressed in cardiac fibroblasts. Furthermore, PKN mediates the conversion of fibroblasts into myofibroblasts, which plays a central role in secreting large amounts of ECM proteins via p38 phosphorylation signaling. Fibroblast-specific deletion of PKN led to a reduction of myocardial fibrotic changes and cardiac dysfunction in mice models of ischemia-reperfusion or heart failure with preserved ejection fraction. Our results indicate that PKN is a therapeutic target for cardiac fibrosis in heart failure.


Asunto(s)
Fibroblastos , Fibrosis , Insuficiencia Cardíaca , Miocardio , Miofibroblastos , Proteína Quinasa C , Animales , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Miofibroblastos/metabolismo , Miofibroblastos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Miocardio/patología , Miocardio/metabolismo , Proteína Quinasa C/metabolismo , Proteína Quinasa C/genética , Masculino , Humanos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Matriz Extracelular/metabolismo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Transducción de Señal
2.
Nat Commun ; 14(1): 4675, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542026

RESUMEN

To maintain and restore skeletal muscle mass and function is essential for healthy aging. We have found that myonectin acts as a cardioprotective myokine. Here, we investigate the effect of myonectin on skeletal muscle atrophy in various male mouse models of muscle dysfunction. Disruption of myonectin exacerbates skeletal muscle atrophy in age-associated, sciatic denervation-induced or dexamethasone (DEX)-induced muscle atrophy models. Myonectin deficiency also contributes to exacerbated mitochondrial dysfunction and reduces expression of mitochondrial biogenesis-associated genes including PGC1α in denervated muscle. Myonectin supplementation attenuates denervation-induced muscle atrophy via activation of AMPK. Myonectin also reverses DEX-induced atrophy of cultured myotubes through the AMPK/PGC1α signaling. Furthermore, myonectin treatment suppresses muscle atrophy in senescence-accelerated mouse prone (SAMP) 8 mouse model of accelerated aging or mdx mouse model of Duchenne muscular dystrophy. These data indicate that myonectin can ameliorate skeletal muscle dysfunction through AMPK/PGC1α-dependent mechanisms, suggesting that myonectin could represent a therapeutic target of muscle atrophy.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Esquelético , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/inducido químicamente , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
3.
iScience ; 26(5): 106591, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250342

RESUMEN

Although chronic kidney disease (CKD) is a major health problem worldwide, its underlining mechanism is incompletely understood. We previously identified adipolin as an adipokine which provides benefits for cardiometabolic diseases. Here, we investigated the role of adipolin in the development of CKD. Adipolin-deficiency exacerbated urinary albumin excretion, tubulointerstitial fibrosis and oxidative stress of remnant kidneys in mice after subtotal nephrectomy through inflammasome activation. Adipolin positively regulated the production of ketone body, ß-hydroxybutyrate (BHB) and expression of a catalytic enzyme producing BHB, HMGCS2 in the remnant kidney. Treatment of proximal tubular cells with adipolin attenuated inflammasome activation through the PPARα/HMGCS2-dependent pathway. Furthermore, systemic administration of adipolin to wild-type mice with subtotal nephrectomy ameliorated renal injury, and these protective effects of adipolin were diminished in PPARα-deficient mice. Thus, adipolin protects against renal injury by reducing renal inflammasome activation through its ability to induce HMGCS2-dependent ketone body production via PPARα activation.

4.
Nagoya J Med Sci ; 85(1): 23-26, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36923629

Asunto(s)
Adipoquinas , Obesidad , Humanos
5.
Circ Rep ; 5(2): 46-54, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36818520

RESUMEN

Background: Omentin, a circulating adipokine, is downregulated in complications of obesity, including heart disease. Here, we investigated whether omentin modulates adverse cardiac remodeling in mice after myocardial infarction (MI). Methods and Results: Transgenic mice expressing the human omentin gene in fat tissue (OMT-Tg) and wild-type (WT) mice were subjected to permanent ligation of the left anterior descending coronary artery (LAD) to induce MI. OMT-Tg mice had a higher survival rate after permanent LAD ligation than WT mice. Moreover, OMT-Tg mice had lower heart weight/body weight (HW/BW) and lung weight/body weight (LW/BW) ratios at 4 weeks after coronary artery ligation compared with WT mice. OMT-Tg mice also showed decreased left ventricular diastolic diameter (LVDd) and increased fractional shortening (%FS) following MI. Moreover, an increase in capillary density in the infarct border zone and a decrease in myocardial apoptosis, myocyte hypertrophy, and interstitial fibrosis in the remote zone following MI, were more prevalent in OMT-Tg than WT mice. Finally, intravenous administration of adenoviral vectors expressing human omentin to WT mice after MI resulted in decreases in HW/BW, LW/BW, and LVDd, and an increase in %FS. Conclusions: Our findings document that human omentin prevents pathological cardiac remodeling after chronic ischemia, suggesting that omentin represents a potential therapeutic molecule for the treatment of ischemic heart disease.

6.
Invest Ophthalmol Vis Sci ; 63(5): 14, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35575905

RESUMEN

Purpose: C1q/TNF-related protein (CTRP) 9 is one of the adiponectin paralogs, and a genetic ablation of its receptor, AdipoR1, is known to cause retinal degeneration. The purpose of this study was to determine the role played by CTRP9 in the retina. Methods: The retinas of Ctrp9 gene knockout (KO) and wild type (WT) mice were examined by electroretinography (ERG), histology, RNA sequencing, and quantitative real-time PCR. Results: The amplitude of the photopic ERG elicited by the maximum stimulus intensity was smaller by 40% in the Ctrp9 KO mice than in WT mice at 8 weeks of age. However, the photopic ERGs was not reduced from 8 weeks to 6 months of age. The amplitudes of the scotopic ERGs were not reduced in the Ctrp9 KO mice at 8 weeks and 6 months of age. No distinct histological abnormalities were found in the retinal sections but the density of peanut agglutinin-stained cells in the retinal flat mount of KO mice was reduced to about 70% of that of WT mice. Genomewide RNA sequencing of the retina revealed the absence of the expression of CTRP9 in both KO and WT mice. RNA sequencing and quantitative real-time PCR analysis showed that the expressions of the transcripts of genes expressed in cones, Opn1sw, Opn1mw, Gnat2, and Cnga3, were reduced in the KO mice retina, however, the degree of expression of the transcripts in rods was not significantly reduced. Conclusions: CTRP9 is released ectopically from other tissues, and it regulates the number of cones in the mouse retinas.


Asunto(s)
Adiponectina , Glicoproteínas , Células Fotorreceptoras Retinianas Conos , Adiponectina/genética , Adiponectina/metabolismo , Animales , Electrorretinografía , Glicoproteínas/genética , Glicoproteínas/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Retina/patología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología
7.
Physiol Rep ; 10(5): e15218, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35262272

RESUMEN

Chronic kidney disease (CKD) is an increasing and life-threatening disease worldwide. Recent evidence indicates that blood coagulation factors promote renal dysfunction in CKD patients. Activated factor X (FXa) inhibitors are safe and first-line drugs for the prevention of thrombosis in patients with atrial fibrillation. Here, we investigated the therapeutic effects of edoxaban on CKD using the mouse 5/6 nephrectomy model. Eight-week-old wild-type mice were subjected to 5/6 nephrectomy surgery and randomly assigned to two groups, edoxaban or vehicle admixture diet. Edoxaban treatment led to reduction of urinary albumin excretion and plasma UN levels compared with vehicle group, which was accompanied with reduced glomerular cross-sectional area and cell number. Edoxaban treatment also attenuated fibrinogen positive area in the remnant kidneys after subtotal nephrectomy. Moreover, edoxaban treatment resulted in attenuated tubulointerstitial fibrosis after 5/6 nephrectomy, which was accompanied by reduced expression levels of epithelial-mesenchymal transition (EMT) markers, inflammatory mediators, and oxidative stress markers in the remnant kidneys. Treatment of cultured proximal tubular cells, HK-2 cells, with FXa protein led to increased expression levels of EMT markers, inflammatory mediators, and oxidative stress markers, which were abolished by pretreatment with edoxaban. Treatment of HK-2 cells with edoxaban attenuated FXa-stimulated phosphorylation levels of extracellular signal-regulated kinase (ERK) and NF-κB. Our findings indicate that edoxaban can improve renal injury after subtotal nephrectomy by reducing EMT and inflammatory response, suggesting that FXa inhibition could be a novel therapeutic target for CKD patients with atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Insuficiencia Renal Crónica , Animales , Ratones , Fibrilación Atrial/patología , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal , Inhibidores del Factor Xa/farmacología , Inhibidores del Factor Xa/uso terapéutico , Fibrosis , Mediadores de Inflamación/farmacología , Riñón , Nefrectomía/efectos adversos , Piridinas , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/patología , Tiazoles
8.
Biochem Biophys Res Commun ; 593: 5-12, 2022 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-35051783

RESUMEN

Skeletal muscle atrophy caused by various conditions including aging, nerve damage, and steroid administration, is a serious health problem worldwide. We recently reported that neuron-derived neurotrophic factor (NDNF) functions as a muscle-derived secreted factor, also known as myokine, which exerts protective actions on endothelial cell and cardiomyocyte function. Here, we investigated whether NDNF regulates skeletal muscle atrophy induced by steroid administration and sciatic denervation. NDNF-knockout (KO) mice and age-matched wild-type (WT) mice were subjected to continuous dexamethasone (DEX) treatment or sciatic denervation. NDNF-KO mice exhibited decreased gastrocnemius muscle weight and reduced cross sectional area of myocyte fiber after DEX treatment or sciatic denervation compared with WT mice. Administration of an adenoviral vector expressing NDNF (Ad-NDNF) or recombinant NDNF protein to gastrocnemius muscle of WT mice increased gastrocnemius muscle weight after DEX treatment. NDNF-KO mice showed increased expression of ubiquitin E3-ligases, including atrogin-1 and MuRF-1, in gastrocnemius muscle after DEX treatment, whereas Ad-NDNF reduced expression of atrogin-1 and MuRF-1 in gastrocnemius muscle of WT mice after DEX treatment. Pretreatment of cultured C2C12 myocytes with NDNF protein reversed reduced myotube diameter and increased expression of atrogin-1 and MuRF-1 after DEX stimulation. Treatment of C2C12 myocytes increased Akt phosphorylation. Pretreatment of C2C12 myotubes with the PI3-kinase/Akt inhibitor reversed NDNF-induced increase in myotube fiber diameter after DEX treatment. In conclusion, our findings indicated that NDNF prevents skeletal muscle atrophy in vivo and in vitro through reduction of ubiquitin E3-ligases expression, suggesting that NDNF could be a novel therapeutic target of muscle atrophy.


Asunto(s)
Dexametasona/toxicidad , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/prevención & control , Factores de Crecimiento Nervioso/farmacología , Neuronas/efectos de los fármacos , Sustancias Protectoras/metabolismo , Animales , Antiinflamatorios/toxicidad , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/inducido químicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación
9.
Cardiovasc Res ; 118(6): 1597-1610, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34051089

RESUMEN

AIMS: Abdominal aortic aneurysm (AAA) is an increasing and life-threatening disease. Obesity contributes to an increased risk of AAA. Omentin is a circulating adipokine, which is downregulated in obese complications. Here, we examined whether omentin could modulate angiotensin (Ang) II-induced AAA formation in apolipoprotein E-knockout (apoE-KO) mice. METHODS AND RESULTS: apoE-KO mice were crossed with transgenic mice expressing the human omentin gene in fat tissue (OMT-Tg mice) to generate apoE-KO/OMT-Tg mice. apoE-KO/OMT-Tg and apoE-KO mice were subjected to continuous Ang II infusion by using osmotic mini pumps. apoE-KO/OMT-Tg mice exhibited a lower incidence of AAA formation and a reduced maximal diameter of AAA compared with apoE-KO mice. apoE-KO/OMT-Tg mice showed attenuated disruption of medial elastic fibres in response to Ang II compared with apoE-KO mice. apoE-KO/OMT-Tg mice also displayed reduced expression levels of matrix metalloproteinase (MMP) 9, MMP2, and pro-inflammatory genes in aortic walls compared with apoE-KO mice. Furthermore, systemic administration of omentin also attenuated AAA formation and disruption of medial elastic fibres in response to Ang II in apoE-KO mice. Treatment of human monocyte-derived macrophages with omentin protein attenuated expression of MMP9 and pro-inflammatory mediators, and MMP9 activation after stimulation with lipopolysaccharide. Treatment of human vascular smooth muscle cells (VSMCs) with omentin protein reduced expression and activation of MMP2 after stimulation with tumour necrosis factor α. Omentin treatment increased phosphorylation levels of Akt in human macrophages and VSMCs. The suppressive effects of omentin on MMP9 and MMP2 expression were reversed by inhibition of integrin-αVß3/PI3-kinase/Akt signalling in macrophages and VSMCs, respectively. CONCLUSION: These data suggest that omentin acts as an adipokine that can attenuate Ang II-induced development of AAA through suppression of MMP9 and MMP2 expression and inflammatory response in the vascular wall.


Asunto(s)
Aneurisma de la Aorta Abdominal , Citocinas/metabolismo , Lectinas/metabolismo , Adipoquinas , Angiotensina II/metabolismo , Animales , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/prevención & control , Apolipoproteínas E/genética , Modelos Animales de Enfermedad , Proteínas Ligadas a GPI/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt
10.
Biomed Pharmacother ; 146: 112566, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34954642

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCRs) regulate the pathological and physiological functions of the heart. GPCR antagonists are widely used in the treatment of chronic heart failure. Despite therapeutic advances in the treatments for cardiovascular diseases, heart failure is a major clinical health problem, with significant mortality and morbidity. Corticotropin releasing hormone receptor 2 (CRHR2) is highly expressed in cardiomyocytes, and cardiomyocyte-specific deletion of the genes encoding CRHR2 suppresses pressure overload-induced cardiac dysfunction. This suggests that the negative modulation of CRHR2 may prevent the progression of heart failure. However, there are no systemic drugs against CRHR2. FINDINGS: We developed a novel, oral, small molecule antagonist of CRHR2, RQ-00490721, to investigate the inhibition of CRHR2 as a potential therapeutic approach for the treatment of heart failure. In vitro, RQ-00490721 decreased CRHR2 agonist-induced 3', 5'-cyclic adenosine monophosphate (cAMP) production. In vivo, RQ-00490721 showed sufficient oral absorption and better distribution to peripheral organs than to the central nervous system. Oral administration of RQ-00490721 inhibited the CRHR2 agonist-induced phosphorylation of cAMP-response element binding protein (CREB) in the heart, which regulates a transcription activator involved in heart failure. RQ-00490721 administration was not found to affect basal heart function in mice but protected them from pressure overload-induced cardiac dysfunction. INTERPRETATION: Our results suggest that RQ-00490721 is a promising agent for use in the treatment of chronic heart failure.


Asunto(s)
Insuficiencia Cardíaca/patología , Miocitos Cardíacos/efectos de los fármacos , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Administración Oral , Animales , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria
11.
FASEB J ; 35(12): e22048, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34807469

RESUMEN

In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.


Asunto(s)
Acuaporinas/metabolismo , Cardiomiopatías/prevención & control , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Hipoxia/fisiopatología , Isquemia/prevención & control , Lipoproteína Lipasa/fisiología , Proteínas Mitocondriales/metabolismo , Animales , Acuaporinas/genética , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Glicerolfosfato Deshidrogenasa/genética , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética
12.
J Am Heart Assoc ; 10(16): e020896, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34348468

RESUMEN

Background Circadian rhythm disorders, often seen in modern lifestyles, are a major social health concern. The aim of this study was to examine whether circadian rhythm disorders would influence angiogenesis and blood perfusion recovery in a mouse model of hind limb ischemia. Methods and Results A jet-lag model was established in C57BL/6J mice using a light-controlled isolation box. Control mice were kept at a light/dark 12:12 (12-hour light and 12-hour dark) condition. Concentrations of plasma vascular endothelial growth factor and circulating endothelial progenitor cells in control mice formed a circadian rhythm, which was diminished in the jet-lag model (P<0.05). The jet-lag condition deteriorated tissue capillary formation (P<0.001) and tissue blood perfusion recovery (P<0.01) in hind limb ischemia, which was associated with downregulation of vascular endothelial growth factor expression in local ischemic tissue and in the plasma. Although the expression of clock genes (ie, Clock, Bmal1, and Cry) in local tissues was upregulated after ischemic injury, the expression levels of cryptochrome (Cry) 1 and Cry2 were inhibited by the jet-lag condition. Next, Cry1 and Cry2 double-knockout mice were examined for blood perfusion recoveries and a reparative angiogenesis. Cry1 and Cry2 double-knockout mice revealed suppressed capillary density (P<0.001) and suppressed tissue blood perfusion recovery (P<0.05) in the hind limb ischemia model. Moreover, knockdown of CRY1/2 in human umbilical vein endothelial cells was accompanied by increased expression of WEE1 and decreased expression of HOXC5. This was associated with decreased proliferative capacity, migration ability, and tube formation ability of human umbilical vein endothelial cells, respectively, leading to impairment of angiogenesis. Conclusions Our data suggest that circadian rhythm disorder deteriorates reparative ischemia-induced angiogenesis and that maintenance of circadian rhythm plays an important role in angiogenesis.


Asunto(s)
Ritmo Circadiano , Miembro Posterior/irrigación sanguínea , Isquemia/fisiopatología , Síndrome Jet Lag/fisiopatología , Neovascularización Fisiológica , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Proliferación Celular , Células Cultivadas , Criptocromos/genética , Criptocromos/metabolismo , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Isquemia/sangre , Isquemia/complicaciones , Isquemia/genética , Síndrome Jet Lag/sangre , Síndrome Jet Lag/complicaciones , Síndrome Jet Lag/genética , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Densidad Microvascular , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Flujo Sanguíneo Regional , Transducción de Señal , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/sangre
13.
J Cardiol ; 78(6): 524-532, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34334268

RESUMEN

BACKGROUND: Follistatin-like 1 (FSTL1) is a myocyte-secreted glycoprotein that could play a role in myocardial maintenance in response to harmful stimuli. We investigated the association between serum FSTL1 levels, especially focused on transcardiac gradient and the hemodynamics, to explore the prognostic impact of FSTL1 levels in patients with dilated cardiomyopathy (DCM). METHODS: Thirty-two ambulatory patients with DCM (23 men; mean age 59 years) were prospectively enrolled. Blood samples were simultaneously collected from the aortic root (Ao), coronary sinus (CS), as well as from the peripheral vein during cardiac catheterization in stable conditions. The transcardiac gradient of FSTL1 was calculated by the difference between serum FSTL1 levels of CS and Ao (FSTL1CS-Ao). Patients were divided into two groups based on the median of FSTL1CS-Ao: Low FSTL1CS-Ao group, <0 ng/mL; High FSTL1CS-Ao group, ≥0 ng/mL. Cardiac events were defined as a composite of cardiac deaths and hospitalizations for worsening heart failure. RESULTS: Mean left ventricular ejection fraction and median plasma B-type natriuretic peptide levels were 30.9% and 92.3 pg/mL, respectively. FSTL1CS-Ao was negatively correlated with pulmonary capillary wedge pressure (r = -0.400, p = 0.023). Kaplan-Meier survival analysis showed that event-free survival rate was significantly lower in the Low FSTL1CS-Ao group than in the High FSTL1CS-Ao group (p = 0.013). Cox regression analyses revealed that the transcardiac gradient of FSTL1 was an independent predictor for cardiac events. Receiver operating characteristic curve analysis showed that the cut-off value of FSTL1CS-Ao for the prediction of cardiac events was -4.09 ng/mL with sensitivity of 82% and specificity of 86% (area under the curve, 0.87). CONCLUSIONS: Fifty percent of patients had negative transcardiac gradient of FSTL1. Reduced transcardiac gradient of FSTL1 might be a novel prognostic predictor in DCM patients with impaired hemodynamics.


Asunto(s)
Cardiomiopatía Dilatada , Proteínas Relacionadas con la Folistatina , Insuficiencia Cardíaca , Folistatina , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Volumen Sistólico , Función Ventricular Izquierda
15.
PLoS One ; 15(12): e0243483, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33275602

RESUMEN

BACKGROUND: Myocardial infarction (MI) is a leading cause of death worldwide. We previously identified adipolin, also known as C1q/Tnf-related protein 12, as an anti-inflammatory adipokine with protective features against metabolic and vascular disorders. Here, we investigated the effect of adipolin on myocardial remodeling in a mouse model of MI. METHODS: Male adipolin-knockout (APL-KO) and wild-type (WT) mice were subjected to the permanent ligation of the left anterior descending coronary artery to create MI. RESULTS: APL-KO mice exhibited increased ratios of heart weight/body weight and lung weight/body weight after MI compared with WT mice. APL-KO mice showed increased left ventricular diastolic diameter and decreased fractional shortening after MI compared with WT mice. APL-KO mice exhibited increased expression of pro-inflammatory mediators and enhanced cardiomyocyte apoptosis in the post-MI hearts compared with WT mice. Systemic administration of adenoviral vectors expressing adipolin to WT mice after MI surgery improved left ventricular contractile dysfunction and reduced cardiac expression of pro-inflammatory genes. Treatment of cultured cardiomyocytes with adipolin protein reduced lipopolysaccharide-induced expression of pro-inflammatory mediators and hypoxia-induced apoptosis. Treatment with adipolin protein increased Akt phosphorylation in cardiomyocytes. Inhibition of PI3 kinase/Akt signaling reversed the anti-inflammatory and anti-apoptotic effects of adipolin in cardiomyocytes. CONCLUSION: Our data indicate that adipolin ameliorates pathological remodeling of myocardium after MI, at least in part, by its ability to reduce myocardial inflammatory response and apoptosis.


Asunto(s)
Adipoquinas/metabolismo , Infarto del Miocardio/patología , Remodelación Ventricular , Adipoquinas/deficiencia , Adipoquinas/genética , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
Front Pharmacol ; 11: 1313, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973529

RESUMEN

Strategies to promote revascularization are valuable for ischemic cardiovascular disease. Although C1q/TNF-related protein (CTRP) 9 is an adiponectin paralog with protective properties against cardiometabolic disorders, the role of endogenous CTRP9 in endothelial function is largely unknown. This study aimed to investigate the effects of CTRP9 on revascularization processes and dissected the potential mechanisms. CTRP9-knockout (KO) and wild-type (WT) mice were subjected to unilateral hindlimb ischemic surgery. CTRP9-KO mice exhibited impaired blood flow recovery and decreased capillary density in the ischemic limb compared with WT mice. In both CTRP9-KO and WT mice, systemic delivery of an adenoviral vector expressing CTRP9 (Ad-CTRP9) accelerated blood flow recovery. Treatment with recombinant CTRP9 protein increased network formation and migration of cultured human umbilical vein endothelial cells (HUVECs). CTRP9 promoted the phosphorylation of AMP-activated kinase (AMPK), Akt, and endothelial nitric oxide synthase (eNOS) in HUVECs. CTRP9-KO mice also showed reduced phosphorylation levels of AMPK, Akt, and eNOS in the ischemic limbs compared with WT mice. Furthermore, blockade of AMPK or Akt signaling pathway reversed the CTRP9-stimulated eNOS phosphorylation in HUVECs. Treatment with the NOS inhibitor significantly reduced CTRP9-stimulated network formation and migration of HUVECs. Of note, Ad-CTRP9 had no effects on blood flow of the ischemic limb in eNOS-KO mice. These results indicated that CTRP9 promotes endothelial cell function and ischemia-induced revascularization through the eNOS-dependent mechanism, suggesting that CTRP9 represents a target molecule for treatment of ischemic vascular diseases.

17.
PLoS One ; 15(6): e0235362, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32584895

RESUMEN

OBJECTIVE: Cardiovascular disease is a leading cause of death worldwide. Obesity-related metabolic disorders including dyslipidemia cause impaired collateralization under ischemic conditions, thereby resulting in exacerbated cardiovascular dysfunction. Pemafibrate is a novel selective PPARα modulator, which has been reported to improve atherogenic dyslipidemia, in particular, hypertriglyceridemia and low HDL-cholesterol. Here, we investigated whether pemafibrate modulates the revascularization process in a mouse model of hindlimb ischemia. METHODS AND RESULTS: Male wild-type (WT) mice were randomly assigned to two groups, normal diet or pemafibrate admixture diet from the ages of 6 weeks. After 4 weeks, mice were subjected to unilateral hindlimb surgery to remove the left femoral artery and vein. Pemafibrate treatment enhanced blood flow recovery and capillary formation in ischemic limbs of mice, which was accompanied by enhanced phosphorylation of endothelial nitric oxide synthase (eNOS). Treatment of cultured endothelial cells with pemafibrate resulted in increased network formation and migratory activity, which were blocked by pretreatment with the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Pemafibrate treatment also increased plasma levels of the PPARα-regulated gene, fibroblast growth factor (FGF) 21 in WT mice. Systemic administration of adenoviral vectors expressing FGF21 (Ad-FGF21) to WT mice enhanced blood flow recovery, capillary density and eNOS phosphorylation in ischemic limbs. Treatment of cultured endothelial cells with FGF21 protein led to increases in endothelial cell network formation and migration, which were canceled by pretreatment with L-NAME. Furthermore, administration of pemafibrate or Ad-FGF21 had no effects on blood flow in ischemic limbs in eNOS-deficient mice. CONCLUSION: These data suggest that pemafibrate can promote revascularization in response to ischemia, at least in part, through direct and FGF21-mediated modulation of endothelial cell function. Thus, pemafibrate could be a potentially beneficial drug for ischemic vascular disease.


Asunto(s)
Benzoxazoles/farmacología , Butiratos/farmacología , Isquemia/patología , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Miembro Posterior/irrigación sanguínea , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , PPAR alfa/química , PPAR alfa/metabolismo , Fosforilación/efectos de los fármacos
19.
Cardiovasc Res ; 116(1): 237-249, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30874788

RESUMEN

AIMS: Secreted factors produced by adipose tissue are involved in the pathogenesis of cardiovascular disease. We previously identified adipolin, also known as C1q/TNF-related protein 12, as an insulin-sensitizing adipokine. However, the role of adipolin in vascular disease remains unknown. Here, we investigated whether adipolin modulates pathological vascular remodelling. METHODS AND RESULTS: Adipolin-knockout (APL-KO) and wild-type (WT) mice were subjected to wire-induced injury of the femoral artery. APL-KO mice showed increased neointimal thickening after vascular injury compared with WT mice, which was accompanied by an enhanced inflammatory response and vascular cell proliferation in injured arteries. Adipolin deficiency also led to a reduction in transforming growth factor-ß (TGF-ß) 1 protein levels in injured arteries. Treatment of cultured macrophages with adipolin protein led to a reduction in lipopolysaccharide-stimulated expression of inflammatory mediators, including tumour necrosis factor (TNF)-α, interleukin (IL) 6, and monocyte chemotactic protein (MCP)-1. These effects were reversed by inhibition of TGF-ß receptor II (TGF-ßRII)/Smad2 signalling. Adipolin also reduced platelet-derived growth factor (PDGF)-BB-stimulated proliferation of vascular smooth muscle cells (VSMCs) through a TGF-ßRII/Smad2-dependent pathway. Furthermore, adipolin treatment significantly increased TGF-ß1 concentration in media from cultured VSMCs and macrophages. CONCLUSION: These data indicate that adipolin protects against the development of pathological vascular remodelling by attenuating macrophage inflammatory responses and VSMC proliferation.


Asunto(s)
Adipoquinas/metabolismo , Proliferación Celular , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Remodelación Vascular , Lesiones del Sistema Vascular/metabolismo , Adipoquinas/deficiencia , Adipoquinas/genética , Animales , Modelos Animales de Enfermedad , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Arteria Femoral/patología , Arteria Femoral/fisiopatología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Neointima , Fosforilación , Células RAW 264.7 , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Transducción de Señal , Proteína Smad2/genética , Proteína Smad2/metabolismo , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/patología , Lesiones del Sistema Vascular/fisiopatología
20.
Circulation ; 140(21): 1737-1752, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31564129

RESUMEN

BACKGROUND: Heart failure is a complex syndrome that results from structural or functional impairment of ventricular filling or blood ejection. Protein phosphorylation is a major and essential intracellular mechanism that mediates various cellular processes in cardiomyocytes in response to extracellular and intracellular signals. The RHOA-associated protein kinase (ROCK/Rho-kinase), an effector regulated by the small GTPase RHOA, causes pathological phosphorylation of proteins, resulting in cardiovascular diseases. RHOA also activates protein kinase N (PKN); however, the role of PKN in cardiovascular diseases remains unclear. METHODS: To explore the role of PKNs in heart failure, we generated tamoxifen-inducible, cardiomyocyte-specific PKN1- and PKN2-knockout mice by intercrossing the αMHC-CreERT2 line with Pkn1flox/flox and Pkn2flox/flox mice and applied a mouse model of transverse aortic constriction- and angiotensin II-induced heart failure. To identify a novel substrate of PKNs, we incubated GST-tagged myocardin-related transcription factor A (MRTFA) with recombinant GST-PKN-catalytic domain or GST-ROCK-catalytic domain in the presence of radiolabeled ATP and detected radioactive GST-MRTFA as phosphorylated MRTFA. RESULTS: We demonstrated that RHOA activates 2 members of the PKN family of proteins, PKN1 and PKN2, in cardiomyocytes of mice with cardiac dysfunction. Cardiomyocyte-specific deletion of the genes encoding Pkn1 and Pkn2 (cmc-PKN1/2 DKO) did not affect basal heart function but protected mice from pressure overload- and angiotensin II-induced cardiac dysfunction. Furthermore, we identified MRTFA as a novel substrate of PKN1 and PKN2 and found that MRTFA phosphorylation by PKN was considerably more effective than that by ROCK in vitro. We confirmed that endogenous MRTFA phosphorylation in the heart was induced by pressure overload- and angiotensin II-induced cardiac dysfunction in wild-type mice, whereas cmc-PKN1/2 DKO mice suppressed transverse aortic constriction- and angiotensin II-induced phosphorylation of MRTFA. Although RHOA-mediated actin polymerization accelerated MRTFA-induced gene transcription, PKN1 and PKN2 inhibited the interaction of MRTFA with globular actin by phosphorylating MRTFA, causing increased serum response factor-mediated expression of cardiac hypertrophy- and fibrosis-associated genes. CONCLUSIONS: Our results indicate that PKN1 and PKN2 activation causes cardiac dysfunction and is involved in the transition to heart failure, thus providing unique targets for therapeutic intervention for heart failure.


Asunto(s)
Actinas/metabolismo , Insuficiencia Cardíaca/enzimología , Miocitos Cardíacos/enzimología , Proteína Quinasa C/metabolismo , Transactivadores/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Fosforilación , Unión Proteica , Proteína Quinasa C/deficiencia , Proteína Quinasa C/genética , Transducción de Señal , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...