Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 16138, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752147

RESUMEN

Patients endure risk and uncertainty when they participate in clinical trials. We previously estimated that 12,217 patient-participants are required to bring a new cancer drug to market. However, many development efforts are aimed at extending the label of already approved drugs. Herein, we estimate the number of patients required to extend the indication of an FDA approved cancer drug. We identified all anti-cancer drugs approved by the FDA 2012 to 2015. We searched clinicaltrials.gov to identify all drug development trajectories (i.e., a series of one or more clinical trials testing a unique drug-indication pairing) launched after FDA approval for each drug. We identified which trajectories produced the following milestones: secondary FDA approvals, secondary FDA approvals achieving substantial clinical benefit in ESMO-MCBS, and recommendations in NCCN clinical practice guidelines. Using the total enrollment, we estimated the number of patients needed to reach each milestone. Forty-two drugs were approved by the FDA between 2012 and 2015, leading to 451 post-approval trajectories enrolling 129,548 patients. Fourteen secondary FDA approvals were identified, of which 4 met the ESMO-MCBS definition of substantial clinical benefit. Fourteen NCCN off-label recommendations were obtained. A total of 9253, 32,387 and 4627 patients were needed to attain an FDA approval, an approval with substantial clinical benefit on ESMO-MCBS, and an NCCN guideline recommendation, respectively. The number of patients needed to obtain a first secondary FDA approval was 16,596. Large numbers of patients are needed to extend the label of prior FDA approved drugs. Label extension after approval entails lower marginal costs for developers. However, extra knowledge available to researchers about a drug's safety and pharmacology after FDA approval does not appear to translate into reduced patient numbers required for developing new cancer applications.


Asunto(s)
Neoplasias , Humanos , Estudios Retrospectivos , Neoplasias/tratamiento farmacológico , Desarrollo de Medicamentos , Conocimiento , Pacientes
2.
PLoS One ; 17(9): e0274115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36094914

RESUMEN

BACKGROUND: Once a drug gets FDA approved, researchers often attempt to discover new applications in different indications. The clinical impact of such post-approval activities is uncertain. We aimed to compare the clinical impact of research efforts started after approval with those started before for cancer drugs. METHODS: We used Drugs@FDA to perform a retrospective cohort study of secondary approvals for cancer drugs that were initially FDA approved between 2005 and 2017. Clinicaltrials.gov was used to identify the beginning of each research trajectory that resulted in a secondary FDA approval. Each trajectory was classified as pre- or post-approval depending on if it was initiated before or after initial drug licensure. Clinical impact was assessed by comparing secondary approvals and NCCN off-label recommendations deriving from pre- vs. post-approval trajectories, pooled effect sizes, incidence, and level of evidence. RESULTS: We identified 77 broad secondary approvals, 60 of which had at least 6 years follow-up. Of these, 9 (15%) resulted from post-approval trajectories, a proportion that is significantly lower than would be expected if the timing of research didn't impact approval (McNemar's test p = 0.001). Compared to pre-approval trajectories, approvals resulting from post-approval trajectories were for cancers with lower mean incidence (6.11 vs 14.83, p = 0.006) and were based on pivotal trials with smaller pooled effect sizes (0.69 vs 0.57, p = 0.02) that were less likely to be randomized (38.5% vs 64.1%, p = 0.145). We identified 69 NCCN off-label recommendations. The proportion stemming from post-approval trajectories was similar to that for pre-approval (56.5% vs. 43.5%). However, recommendations from post-approval trajectories were significantly more likely to involve rare diseases (76.7% vs 51.4%, p = 0.019) and nonsignificantly less likely to be based on level 1 evidence (11.6% vs 22.9%, p = 0.309). CONCLUSION: Secondary FDA approvals are less likely to result from post-approval trajectories and tend to be less impactful compared to approvals originating from research started before first FDA licensure. However, post-approval trajectories may be as likely to lead to NCCN recommendations for off-label use. Limitations of this work include our use of indirect measures of impact and limited follow-up time for trajectories. Our study protocol was pre-registered (https://osf.io/5g3jw/).


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Aprobación de Drogas , Humanos , Neoplasias/tratamiento farmacológico , Estudios Retrospectivos , Estados Unidos , United States Food and Drug Administration
3.
Neurotherapeutics ; 19(5): 1507-1513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764764

RESUMEN

While the drug development literature provides numerous estimates of the financial costs to bring a new drug to market, the investment of patient-participants in the research process has not been described. Trial participants and their caregivers, like companies, invest time and undertake risk when they participate in prelicense trials. We determined the average number of patient-participants needed to develop a novel neurological drug. We created a cohort of 108 unapproved drugs first tested for efficacy between 2006 and 2011 and used ClinicalTrials.gov to capture enrollment in all subsequent prelicense trials of these drugs over a 9-year period. Our primary outcome was the average number of patients enrolled in prelicense neurological drug trials per drug that ultimately attained FDA approval, including patients who participated in both successful and unsuccessful development efforts. Five drugs (4.6%) were FDA approved, and 66,751 patient-participants were enrolled across successful and unsuccessful drug development efforts, resulting in an average of 13,350 patients for each drug attaining approval (95% CI 7155 to 54,954). Our estimates reveal the substantial amount patients and their caregivers contribute to private drug development.


Asunto(s)
Aprobación de Drogas , Desarrollo de Medicamentos , Estados Unidos , Humanos , United States Food and Drug Administration
4.
Ann Intern Med ; 174(3): 326-334, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33226855

RESUMEN

BACKGROUND: Anticipated success rates and timelines for COVID-19 vaccine development vary. Recent experience with developing and testing viral vaccine candidates can inform expectations regarding the development of safe and effective vaccines. OBJECTIVE: To estimate timelines and probabilities of success for recent vaccine candidates. DESIGN: ClinicalTrials.gov was searched to identify trials testing viral vaccines that had not advanced to phase 2 before 2005, and the progress of each vaccine from phase 1 through to U.S. Food and Drug Administration (FDA) licensure was tracked. Trial characteristics were double-coded. (Registration: Open Science Framework [https://osf.io/dmuzx/]). SETTING: Trials launched between January 2005 and March 2020. PARTICIPANTS: Preventive viral vaccine candidates for 23 emerging or reemerged viral infectious diseases. MEASUREMENTS: The primary end point was the probability of vaccines advancing from launch of phase 2 to FDA licensure within 10 years. RESULTS: In total, 606 clinical trials forming 220 distinct development trajectories (267 343 enrolled participants) were identified. The probability of vaccines progressing from phase 2 to licensure within 10 years was 10.0% (95% CI, 2.6% to 16.9%), with most approvals representing H1N1 or H5N1 vaccines. The average timeline from phase 2 to approval was 4.4 years (range, 6.4 weeks to 13.9 years). The probabilities of advancing from phase 1 to 2, phase 2 to 3, and phase 3 to licensure within the total available follow-up time were 38.2% (CI, 30.7% to 45.0%), 38.3% (CI, 23.1% to 50.5%), and 61.1% (CI, 3.7% to 84.3%), respectively. LIMITATIONS: The study did not account for preclinical development and relied primarily on ClinicalTrials.gov and FDA resources. Success probabilities do not capture the varied reasons why vaccines fail to advance to regulatory approval. CONCLUSION: Success probabilities and timelines varied widely across different vaccine types and diseases. If a SARS-CoV-2 vaccine is licensed within 18 months of the start of the pandemic, it will mark an unprecedented achievement for noninfluenza viral vaccine development. PRIMARY FUNDING SOURCE: McGill Interdisciplinary Initiative in Infection and Immunity (MI4) Emergency COVID-19 Research Funding program.


Asunto(s)
Enfermedades Transmisibles Emergentes/prevención & control , Aprobación de Drogas , Desarrollo de Medicamentos , Virosis/prevención & control , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Gripe Humana/prevención & control , Pandemias/prevención & control , Estudios Retrospectivos , SARS-CoV-2 , Factores de Tiempo , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...