Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Lipid Res ; 64(9): 100423, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558128

RESUMEN

Biallelic pathogenic variants of the Sar1b gene cause chylomicron retention disease (CRD) whose central phenotype is the inability to secrete chylomicrons. Patients with CRD experience numerous clinical symptoms such as gastrointestinal, hepatic, neuromuscular, ophthalmic, and cardiological abnormalities. Recently, the production of mice expressing either a targeted deletion or mutation of Sar1b recapitulated biochemical and gastrointestinal defects associated with CRD. The present study was conducted to better understand little-known aspects of Sar1b mutations, including mouse embryonic development, lipid profile, and lipoprotein composition in response to high-fat diet, gut and liver cholesterol metabolism, sex-specific effects, and genotype-phenotype differences. Sar1b deletion and mutation produce a lethal phenotype in homozygous mice, which display intestinal lipid accumulation without any gross morphological abnormalities. On high-fat diet, mutant mice exhibit more marked abnormalities in body composition, adipose tissue and liver weight, plasma cholesterol, non-HDL cholesterol and polyunsaturated fatty acids than those on the regular Chow diet. Divergences were also noted in lipoprotein lipid composition, lipid ratios (serving as indices of particle size) and lipoprotein-apolipoprotein distribution. Sar1b defects significantly reduce gut cholesterol accumulation while altering key players in cholesterol metabolism. Noteworthy, variations were observed between males and females, and between Sar1b deletion and mutation phenotypes. Overall, mutant animal findings reveal the importance of Sar1b in several biochemical, metabolic and developmental processes.


Asunto(s)
Dieta Alta en Grasa , Desarrollo Embrionario , Proteínas de Unión al GTP Monoméricas , Animales , Femenino , Humanos , Masculino , Ratones , Colesterol/metabolismo , Quilomicrones/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Proteínas de Unión al GTP Monoméricas/genética
2.
Antioxid Redox Signal ; 37(1-3): 54-83, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35072542

RESUMEN

Significance: Metabolic syndrome (MetS) prevalence continues to grow and represents a serious public health issue worldwide. This multifactorial condition carries the risk of hastening the development of type 2 diabetes (T2D), non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). Another troubling aspect of MetS is the requirement of poly-pharmacological therapy not devoid of side effects. Therefore, there is an urgent need for prospecting alternative nutraceuticals as effective therapeutic agents for MetS. Recent Advances: Currently, there is an increased interest in understanding the regulation of metabolic derangements by specialized pro-resolving lipid mediators (SPMs), especially those derived from the long chain n-3 polyunsaturated fatty acids. Critical Issues: The SPMs are recognized as efficient modulators that are capable of inhibiting the production of pro-inflammatory cytokines, blocking neutrophil activation/recruitment, and inducing non-phlogistic (anti-inflammatory) activation of macrophage engulfment and removal of apoptotic inflammatory cells and debris. The aim of the present review is precisely to first underline key concepts relative to SPM functions before focusing on their status and actions on MetS components (e.g., obesity, glucose dysmetabolism, hyperlipidemia, hypertension) and complications such as T2D, NAFLD, and CVD. Future Directions: Valuable data from preclinical and clinical investigations have emphasized the SPM functions and influence on oxidative stress- and inflammation-related MetS. Despite these promising findings obtained without compromising host defense, additional efforts are needed to evaluate their potential therapeutic applications and further develop practical tools to monitor their bioavailability to cope with cardiometabolic disorders. Antioxid. Redox Signal. 37, 54-83.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Ácidos Grasos Omega-3 , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ácidos Grasos Omega-3/uso terapéutico , Humanos , Inflamación/metabolismo , Mediadores de Inflamación , Síndrome Metabólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
3.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36670951

RESUMEN

While the prevalence of metabolic syndrome (MetS) is steadily increasing worldwide, no optimal pharmacotherapy is readily available to address its multifaceted risk factors and halt its complications. This growing challenge mandates the development of other future curative directions. The purpose of the present study is to investigate the efficacy of cranberry proanthocyanidins (PACs) in improving MetS pathological conditions and liver complications; C57BL/6J mice were fed either a standard chow or a high fat/high sucrose (HFHS) diet with and without PACs (200 mg/kg), delivered by daily gavage for 12 weeks. Our results show that PACs lowered HFHS-induced obesity, insulin resistance, and hyperlipidemia. In conjunction, PACs lessened circulatory markers of oxidative stress (OxS) and inflammation. Similarly, the anti-oxidative and anti-inflammatory capacities of PACs were noted in the liver in association with improved hepatic steatosis. Inhibition of lipogenesis and stimulation of beta-oxidation could account for PACs-mediated decline of fatty liver as evidenced not only by the expression of rate-limiting enzymes but also by the status of AMPKα (the key sensor of cellular energy) and the powerful transcription factors (PPARα, PGC1α, SREBP1c, ChREBP). Likewise, treatment with PACs resulted in the downregulation of critical enzymes of liver gluconeogenesis, a process contributing to increased rates of glucose production in type 2 diabetes. Our findings demonstrate that PACs prevented obesity and improved insulin resistance likely via suppression of OxS and inflammation while diminishing hyperlipidemia and fatty liver disease, as clear evidence for their strength of fighting the cluster of MetS abnormalities.

4.
Biomedicines ; 9(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34572325

RESUMEN

BACKGROUND AND AIMS: The increasing prevalence and absence of effective global treatment for metabolic syndrome (MetS) are alarming given the potential progression to severe non-communicable disorders such as type 2 diabetes and nonalcoholic fatty liver disease. The purpose of this study was to investigate the regulatory role of glycomacropeptide (GMP), a powerful milk peptide, in insulin resistance and liver dysmetabolism, two central MetS conditions. MATERIALS AND METHODS: C57BL/6 male mice were fed a chow (Ctrl), high-fat, high-sucrose (HFHS) diet or HFHS diet along with GMP (200 mg/kg/day) administered by gavage for 12 weeks. RESULTS: GMP lowered plasma insulin levels (in response to oral glucose tolerance test) and HOMA-IR index, indicating a more elevated systemic insulin sensitivity. GMP was also able to decrease oxidative stress and inflammation in the circulation as reflected by the decline of malondialdehyde, F2 isoprostanes and lipopolysaccharide. In the liver, GMP raised the protein expression of the endogenous anti-oxidative enzyme GPx involving the NRF2 signaling pathway. Moreover, the administration of GMP reduced the gene expression of hepatic pro-inflammatory COX-2, TNF-α and IL-6 via inactivation of the TLR4/NF-κB signaling pathway. Finally, GMP improved hepatic insulin sensitization given the modulation of AKT, p38 MAPK and SAPK/JNK activities, thereby restoring liver homeostasis as revealed by enhanced fatty acid ß-oxidation, reduced lipogenesis and gluconeogenesis. CONCLUSIONS: Our study provides evidence that GMP represents a promising dietary nutraceutical in view of its beneficial regulation of systemic insulin resistance and hepatic insulin signaling pathway, likely via its powerful antioxidant and anti-inflammatory properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA