Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Endocrinol Metab ; 109(5): 1318-1327, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37988600

RESUMEN

CONTEXT: Exercise training is known to improve glucose tolerance and reverse insulin resistance in people with obesity. However, some individuals fail to improve or even decline in their clinical traits following exercise intervention. OBJECTIVE: This study focused on gene expression and DNA methylation signatures in skeletal muscle of low (LRE) and high responders (RES) to 8 weeks of supervised endurance training. METHODS: We performed skeletal muscle gene expression and DNA methylation analyses in LRE and RES before and after exercise intervention. Additionally, we applied the least absolute shrinkage and selection operator (LASSO) approach to identify predictive marker genes of exercise outcome. RESULTS: We show that the two groups differ markedly already before the intervention. RES were characterized by lower expression of genes involved in DNA replication and repair, and higher expression of extracellular matrix (ECM) components. The LASSO approach identified several novel candidates (eg, ZCWPW2, FOXRED1, STK40) that have not been previously described in the context of obesity and exercise response. Following the intervention, LRE reacted with expression changes of genes related to inflammation and apoptosis, RES with genes related to mitochondrial function. LRE exhibited significantly higher expression of ECM components compared to RES, suggesting improper remodeling and potential negative effects on insulin sensitivity. Between 45% and 70% of differences in gene expression could be linked to differences in DNA methylation. CONCLUSION: Together, our data offer an insight into molecular mechanisms underlying differences in response to exercise and provide potential novel markers for the success of intervention.

2.
Obesity (Silver Spring) ; 32(2): 363-375, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086776

RESUMEN

OBJECTIVE: The aim of this study was to discover novel markers underlying the improvement of skeletal muscle metabolism after bariatric surgery. METHODS: Skeletal muscle transcriptome data of lean people and people with obesity, before and 1 year after bariatric surgery, were subjected to weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression. Results of LASSO were confirmed in a replication cohort. RESULTS: The expression levels of 440 genes differing between individuals with and without obesity were no longer different 1 year after surgery, indicating restoration. WGCNA clustered 116 genes with normalized expression in one major module, particularly correlating to weight loss and decreased plasma free fatty acids (FFA), 44 of which showed an obesity-related phenotype upon deletion in mice. Among the genes of the major module, 105 represented prominent markers for reduced FFA concentration, including 55 marker genes for decreased BMI in both the discovery and replication cohorts. CONCLUSIONS: Previously unknown gene networks and marker genes underlined the important role of FFA in restoring muscle gene expression after bariatric surgery and further suggest novel therapeutic targets for obesity.


Asunto(s)
Cirugía Bariátrica , Transcriptoma , Humanos , Animales , Ratones , Obesidad/genética , Obesidad/cirugía , Obesidad/metabolismo , Músculo Esquelético/metabolismo , Pérdida de Peso/genética , Ácidos Grasos no Esterificados/metabolismo , Redes Reguladoras de Genes
3.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958657

RESUMEN

MicroRNAs (miRNAs) recently emerged as means of communication between insulin-sensitive tissues to mediate diabetes development and progression, and as such they present a valuable proxy for epigenetic alterations associated with type 2 diabetes. In order to identify miRNA markers for the precursor of diabetes called prediabetes, we applied a translational approach encompassing analysis of human plasma samples, mouse tissues and an in vitro validation system. MiR-652-3p, miR-877-5p, miR-93-5p, miR-130a-3p, miR-152-3p and let-7i-5p were increased in plasma of women with impaired fasting glucose levels (IFG) compared to those with normal fasting glucose and normal glucose tolerance (NGT). Among these, let-7i-5p and miR-93-5p correlated with fasting blood glucose levels. Human data were then compared to miRNome data obtained from islets of Langerhans and adipose tissue of 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and liver fat content. Similar to human plasma, let-7i-5p was increased in adipose tissue and islets of Langerhans of diabetes-prone mice. As predicted by the in silico analysis, overexpression of let-7i-5p in the rat ß-cell line INS-1 832/12 resulted in downregulation of insulin signaling pathway components (Insr, Rictor, Prkcb, Clock, Sos1 and Kcnma1). Taken together, our integrated approach highlighted let-7i-5p as a potential regulator of whole-body insulin sensitivity and a novel marker of prediabetes in women.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , MicroARNs , Estado Prediabético , Humanos , Femenino , Ratones , Ratas , Animales , MicroARNs/metabolismo , Estado Prediabético/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Obesidad/complicaciones , Obesidad/genética , Glucosa
4.
Mol Metab ; 75: 101774, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429525

RESUMEN

OBJECTIVES: Better disease management can be achieved with earlier detection through robust, sensitive, and easily accessible biomarkers. The aim of the current study was to identify novel epigenetic biomarkers determining the risk of type 2 diabetes (T2D). METHODS: Livers of 10-week-old female New Zealand Obese (NZO) mice, slightly differing in their degree of hyperglycemia and liver fat content and thereby in their diabetes susceptibility were used for expression and methylation profiling. We screened for differences in hepatic expression and DNA methylation in diabetes-prone and -resistant mice, and verified a candidate (HAMP) in human livers and blood cells. Hamp expression was manipulated in primary hepatocytes and insulin-stimulated pAKT was detected. Luciferase reporter assays were conducted in a murine liver cell line to test the impact of DNA methylation on promoter activity. RESULTS: In livers of NZO mice, the overlap of methylome and transcriptome analyses revealed a potential transcriptional dysregulation of 12 hepatokines. The strongest effect with a 52% decreased expression in livers of diabetes-prone mice was detected for the Hamp gene, mediated by elevated DNA methylation of two CpG sites located in the promoter. Hamp encodes the iron-regulatory hormone hepcidin, which had a lower abundance in the livers of mice prone to developing diabetes. Suppression of Hamp reduces the levels of pAKT in insulin-treated hepatocytes. In liver biopsies of obese insulin-resistant women, HAMP expression was significantly downregulated along with increased DNA methylation of a homologous CpG site. In blood cells of incident T2D cases from the prospective EPIC-Potsdam cohort, higher DNA methylation of two CpG sites was related to increased risk of incident diabetes. CONCLUSIONS: We identified epigenetic changes in the HAMP gene which may be used as an early marker preceding T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hepcidinas , Humanos , Femenino , Ratones , Animales , Hepcidinas/genética , Hepcidinas/metabolismo , Metilación de ADN , Diabetes Mellitus Tipo 2/metabolismo , Estudios Prospectivos , Insulina/metabolismo , Obesidad/genética , Biomarcadores/metabolismo , Células Sanguíneas/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34445304

RESUMEN

Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.


Asunto(s)
Empalme Alternativo/fisiología , Diabetes Mellitus Tipo 2/genética , Islotes Pancreáticos/metabolismo , Empalme Alternativo/genética , Animales , Diabetes Mellitus Experimental/etiología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Susceptibilidad a Enfermedades , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Regulación hacia Arriba/genética
7.
J Cachexia Sarcopenia Muscle ; 12(4): 1064-1078, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34196129

RESUMEN

BACKGROUND: Knowledge of age-related DNA methylation changes in skeletal muscle is limited, yet this tissue is severely affected by ageing in humans. METHODS: We conducted a large-scale epigenome-wide association study meta-analysis of age in human skeletal muscle from 10 studies (total n = 908 muscle methylomes from men and women aged 18-89 years old). We explored the genomic context of age-related DNA methylation changes in chromatin states, CpG islands, and transcription factor binding sites and performed gene set enrichment analysis. We then integrated the DNA methylation data with known transcriptomic and proteomic age-related changes in skeletal muscle. Finally, we updated our recently developed muscle epigenetic clock (https://bioconductor.org/packages/release/bioc/html/MEAT.html). RESULTS: We identified 6710 differentially methylated regions at a stringent false discovery rate <0.005, spanning 6367 unique genes, many of which related to skeletal muscle structure and development. We found a strong increase in DNA methylation at Polycomb target genes and bivalent chromatin domains and a concomitant decrease in DNA methylation at enhancers. Most differentially methylated genes were not altered at the mRNA or protein level, but they were nonetheless strongly enriched for genes showing age-related differential mRNA and protein expression. After adding a substantial number of samples from five datasets (+371), the updated version of the muscle clock (MEAT 2.0, total n = 1053 samples) performed similarly to the original version of the muscle clock (median of 4.4 vs. 4.6 years in age prediction error), suggesting that the original version of the muscle clock was very accurate. CONCLUSIONS: We provide here the most comprehensive picture of DNA methylation ageing in human skeletal muscle and reveal widespread alterations of genes involved in skeletal muscle structure, development, and differentiation. We have made our results available as an open-access, user-friendly, web-based tool called MetaMeth (https://sarah-voisin.shinyapps.io/MetaMeth/).


Asunto(s)
Metilación de ADN , Proteómica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Islas de CpG , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético , Adulto Joven
8.
Acta Physiol (Oxf) ; 232(4): e13693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34028994

RESUMEN

AIM: MicroRNAs play an important role in the maintenance of cellular functions by fine-tuning gene expression levels. The aim of the current study was to identify genetically caused changes in microRNA expression which associate with islet dysfunction in diabetic mice. METHODS: To identify novel microRNAs involved in islet dysfunction, transcriptome and miRNome analyses were performed in islets of obese, diabetes-susceptible NZO and diabetes-resistant B6-ob/ob mice and results combined with quantitative trait loci (QTL) and functional in vitro analysis. RESULTS: In islets of NZO and B6-ob/ob mice, 94 differentially expressed microRNAs were detected, of which 11 are located in diabetes QTL. Focusing on conserved microRNAs exhibiting the strongest expression difference and which have not been linked to islet function, miR-205-5p was selected for further analysis. According to transcriptome data and target prediction analyses, miR-205-5p affects genes involved in Wnt and calcium signalling as well as insulin secretion. Over-expression of miR-205-5p in the insulinoma cell line INS-1 increased insulin expression, left-shifted the glucose-dependence of insulin secretion and supressed the expression of the diabetes gene TCF7L2. The interaction between miR-205-5p and TCF7L2 was confirmed by luciferase reporter assay. CONCLUSION: MiR-205-5p was identified as relevant microRNA involved in islet dysfunction by interacting with TCF7L2.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , MicroARNs/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , MicroARNs/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Transcriptoma
9.
Diabetes ; 69(11): 2503-2517, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32816961

RESUMEN

The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62-0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D.


Asunto(s)
Glucemia , Composición Corporal , Peso Corporal , Epigénesis Genética , Islotes Pancreáticos/metabolismo , Animales , Femenino , Hiperglucemia , Hígado , Ratones , Ratones Obesos , Técnicas de Cultivo de Tejidos , Transcriptoma
10.
Mol Metab ; 41: 101042, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32565358

RESUMEN

OBJECTIVE: Altered gene expression contributes to the development of type 2 diabetes (T2D); thus, the analysis of differentially expressed genes between diabetes-susceptible and diabetes-resistant mouse models is an important tool for the determination of candidate genes that participate in the pathology. Based on RNA-seq and array data comparing pancreatic gene expression of diabetes-prone New Zealand Obese (NZO) mice and diabetes-resistant B6.V-ob/ob (B6-ob/ob) mice, the gap junction protein beta 4 (Gjb4) was identified as a putative novel T2D candidate gene. METHODS: Gjb4 was overexpressed in primary islet cells derived from C57BL/6 (B6) mice and INS-1 cells via adenoviral-mediated infection. The proliferation rate of cells was assessed by BrdU incorporation, and insulin secretion was measured under low (2.8 mM) and high (20 mM) glucose concentration. INS-1 cell apoptosis rate was determined by Western blotting assessing cleaved caspase 3 levels. RESULTS: Overexpression of Gjb4 in primary islet cells significantly inhibited the proliferation by 47%, reduced insulin secretion of primary islets (46%) and INS-1 cells (51%), and enhanced the rate of apoptosis by 63% in INS-1 cells. Moreover, an altered expression of the miR-341-3p contributes to the Gjb4 expression difference between diabetes-prone and diabetes-resistant mice. CONCLUSIONS: The gap junction protein Gjb4 is highly expressed in islets of diabetes-prone NZO mice and may play a role in the development of T2D by altering islet cell function, inducing apoptosis and inhibiting proliferation.


Asunto(s)
Conexinas/metabolismo , Secreción de Insulina/genética , Islotes Pancreáticos/metabolismo , Animales , Proliferación Celular/fisiología , Conexinas/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/metabolismo , Secreción de Insulina/fisiología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Páncreas/metabolismo
11.
Sci Rep ; 10(1): 7202, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350386

RESUMEN

Type 2 diabetes and obesity are well-studied metabolic diseases, which are based on genetic and epigenetic alterations in combination with an obesogenic lifestyle. The aim of this study was to test whether SNPs in miRNA-mRNA binding sites that potentially disrupt binding, elevate the expression of miRNA targets, which participate in the development of metabolic diseases. A computational approach was developed that integrates transcriptomics, linkage analysis, miRNA-target prediction data, and sequence information of a mouse model of obesity and diabetes. A statistical analysis demonstrated a significant enrichment of 566 genes for a location in obesity- and diabetes-related QTL. They are expressed at higher levels in metabolically relevant tissues presumably due to altered miRNA-mRNA binding sites. Of these, 51 genes harbor conserved and impaired miRNA-mRNA-interactions in human. Among these, 38 genes have been associated to metabolic diseases according to the phenotypes of corresponding knockout mice or other results described in the literature. The remaining 13 genes (e.g. Jrk, Megf9, Slfn8 and Tmem132e) could be interesting candidates and will be investigated in the future.


Asunto(s)
Regiones no Traducidas 3' , Diabetes Mellitus , MicroARNs , Obesidad , Sitios de Carácter Cuantitativo , Animales , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo
12.
Mamm Genome ; 31(5-6): 134-145, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32279091

RESUMEN

Obesity is a worldwide epidemic and contributes to global morbidity and mortality mediated via the development of nonalcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), cardiovascular (CVD) and other diseases. It is a consequence of an elevated caloric intake, a sedentary lifestyle and a genetic as well as an epigenetic predisposition. This review summarizes changes in DNA methylation and microRNAs identified in blood cells and different tissues in obese human and rodent models. It includes information on epigenetic alterations which occur in response to fat-enriched diets, exercise and metabolic surgery and discusses the potential of interventions to reverse epigenetic modifications.


Asunto(s)
Enfermedades Cardiovasculares/genética , Diabetes Mellitus Tipo 2/genética , Ingestión de Energía/genética , Epigénesis Genética , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Animales , Cirugía Bariátrica/métodos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Metilación de ADN , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Ejercicio Físico , Predisposición Genética a la Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/complicaciones , Obesidad/patología , Obesidad/cirugía , Conducta Sedentaria
13.
J Clin Endocrinol Metab ; 105(4)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31838512

RESUMEN

CONTEXT/OBJECTIVE: Impaired adipose tissue (AT) function might induce recent-onset type 2 diabetes (T2D). Understanding AT energy metabolism could yield novel targets for the treatment of T2D. DESIGN/PATIENTS: Male patients with recently-diagnosed T2D and healthy male controls (CON) of similar abdominal subcutaneous AT (SAT)-thickness, fat mass, and age (n = 14 each), underwent hyperinsulinemic-euglycemic clamps with [6,6-2H2]glucose and indirect calorimetry. We assessed mitochondrial efficiency (coupling: state 3/4o; proton leak: state 4o/u) via high-resolution respirometry in superficial (SSAT) and deep (DSAT) SAT-biopsies, hepatocellular lipids (HCL) and fat mass by proton-magnetic-resonance-spectroscopy and -imaging. RESULTS: T2D patients (known diabetes duration: 2.5 [0.1; 5.0] years) had 43%, 44%, and 63% lower muscle insulin sensitivity (IS), metabolic flexibility (P < 0.01) and AT IS (P < 0.05), 73% and 31% higher HCL (P < 0.05), and DSAT-thickness (P < 0.001), but similar hepatic IS compared with CON. Mitochondrial efficiency was ~22% lower in SSAT and DSAT of T2D patients (P < 0.001) and ~8% lower in SSAT vs DSAT (P < 0.05). In both fat depots, mitochondrial coupling correlated positively with muscle IS and metabolic flexibility (r ≥ 0.40; P < 0.05), proton leak correlated positively (r ≥ 0.51; P < 0.01) and oxidative capacity negatively (r ≤ -0.47; P < 0.05) with fasting free fatty acids (FFA). Metabolic flexibility correlated positively with SAT-oxidative capacity (r ≥ 0.48; P < 0.05) and negatively with DSAT-thickness (r = -0.48; P < 0.05). DSAT-thickness correlated negatively with mitochondrial coupling in both depots (r ≤ -0.50; P < 0.01) and muscle IS (r = -0.59; P < 0.01), positively with FFA during clamp (r = 0.63; P < 0.001) and HCL (r = 0.49; P < 0.01). CONCLUSIONS: Impaired mitochondrial function, insulin resistance, and DSAT expansion are AT abnormalities in recent-onset T2D that might promote whole-body insulin resistance and increased substrate flux to the liver.


Asunto(s)
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Mitocondrias/patología , Grasa Subcutánea Abdominal/patología , Edad de Inicio , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Pronóstico , Estudios Prospectivos , Grasa Subcutánea Abdominal/metabolismo
14.
Nat Commun ; 10(1): 4179, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31519890

RESUMEN

The mechanisms underlying improved insulin sensitivity after surgically-induced weight loss are still unclear. We monitored skeletal muscle metabolism in obese individuals before and over 52 weeks after metabolic surgery. Initial weight loss occurs in parallel with a decrease in muscle oxidative capacity and respiratory control ratio. Persistent elevation of intramyocellular lipid intermediates, likely resulting from unrestrained adipose tissue lipolysis, accompanies the lack of rapid changes in insulin sensitivity. Simultaneously, alterations in skeletal muscle expression of genes involved in calcium/lipid metabolism and mitochondrial function associate with subsequent distinct DNA methylation patterns at 52 weeks after surgery. Thus, initial unfavorable metabolic changes including insulin resistance of adipose tissue and skeletal muscle precede epigenetic modifications of genes involved in muscle energy metabolism and the long-term improvement of insulin sensitivity.


Asunto(s)
Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , Tejido Adiposo/metabolismo , Adulto , Metilación de ADN/genética , Metilación de ADN/fisiología , Epigénesis Genética/genética , Femenino , Derivación Gástrica , Humanos , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Obesidad/cirugía
15.
Diabetes ; 68(1): 188-197, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396904

RESUMEN

Recent studies suggest that insulin-like growth factor binding protein 2 (IGFBP-2) may protect against type 2 diabetes, but population-based human studies are scarce. We aimed to investigate the prospective association of circulating IGFBP-2 concentrations and of differential methylation in the IGFBP-2 gene with type 2 diabetes risk.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Adulto , Anciano , Glucemia/metabolismo , Metilación de ADN/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos
16.
J Nutr Biochem ; 63: 109-116, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30359860

RESUMEN

Dipeptidyl peptidase 4 (DPP4) is known to be elevated in metabolic disturbances such as obesity, type 2 diabetes and fatty liver disease. Lowering DPP4 concentration by pharmacological inhibition improves glucose homeostasis and exhibits beneficial effects to reduce hepatic fat content. As factors regulating the endogenous expression of Dpp4 are unknown, the aim of this study was to examine whether the Dpp4 expression is epigenetically regulated in response to dietary components. Primary hepatocytes were treated with different macronutrients, and Dpp4 mRNA levels and DPP4 activity were evaluated. Moreover, dietary low-protein intervention was conducted in New Zealand obese (NZO) mice, and subsequently, effects on Dpp4 expression, methylation as well as plasma concentration and activity were determined. Our results indicate that Dpp4 mRNA expression is mediated by DNA methylation in several tissues. We therefore consider the Dpp4 southern shore as tissue differentially methylated region. Amino acids increased Dpp4 expression in primary hepatocytes, whereas glucose and fatty acids were without effect. Dietary protein restriction in NZO mice increased Dpp4 DNA methylation in liver leading to diminished Dpp4 expression and consequently to lowered plasma DPP4 activity. We conclude that protein restriction in the adolescent and adult states is a sufficient strategy to reduce DPP4 which in turn contributes to improve glucose homeostasis.


Asunto(s)
Proteínas en la Dieta/farmacología , Dipeptidil Peptidasa 4/genética , Epigénesis Genética , Aminoácidos/farmacología , Animales , Islas de CpG , Metilación de ADN/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Obesos
17.
Mol Metab ; 11: 145-159, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29605715

RESUMEN

OBJECTIVE: Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D. METHODS: A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and blood cells and miR-31 was manipulated in a human fat cell line. RESULTS: In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744) were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT (brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6 was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10 potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes affected the expression of GLUT4, PPARγ, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were correlated to baseline blood glucose concentrations and might be an indicator for diabetes. CONCLUSION: Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , MicroARNs/genética , Obesidad/genética , Sitios de Carácter Cuantitativo , Transcriptoma , Tejido Adiposo/metabolismo , Animales , Células Sanguíneas/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratones , Obesidad/metabolismo
18.
Clin Endocrinol (Oxf) ; 84(2): 216-221, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26218795

RESUMEN

BACKGROUND: Idiopathic short stature (ISS) has a strong familial component, but genetics explains only part of it. Indeed, environmental factors act on human growth either directly or through epigenetic factors that remain to be determined. Given the importance of the GH/IGF1 axis for child growth, we suspected that such epigenetic factors could involve the CG methylation at the IGF1 gene P2 promoter, which was recently shown to be a transcriptional regulator for IGF1 gene and a major contributor to GH sensitivity. OBJECTIVE: Explore whether the methylation of the two IGF1 low-CG-rich promoters (P1 and P2) is associated with ISS. SUBJECTS AND METHODS: A total of 94 children with ISS were compared with 119 age-matched children of normal height for the methylation of CGs located within the IGF1 promoters measured with bisulphite PCR pyrosequencing. RESULTS: The methylation of 5 CGs of the P2 promoter was higher in ISS children, notably CG-137 (49 ± 4% in ISS vs 46 ± 4 % in control children, P = 9 × 10-5 ). This was also true for CG-611 of the P1 promoter (93 ± 3% vs 91 ± 3% P = 10-4 ). The CG methylation of the IGF1 promoters thus takes place among the multifactorial factors that are associated with ISS.

19.
J Clin Endocrinol Metab ; 100(6): E919-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25835289

RESUMEN

CONTEXT: Like all hormones, GH has variable physiological effects across people. Many of these effects initiated by the binding of GH to its receptor (GHR) in target tissues are mediated by the expression of the IGF1 gene. Genetic as well as epigenetic variation is known to contribute to the individual diversity of GH-dependent phenotypes through two mechanisms. The first one is the genetic polymorphism of the GHR gene due to the common deletion of exon 3. The second, more recently reported, is the epigenetic variation in the methylation of a cluster of CGs dinucleotides located within the proximal part of the P2 promoter of the IGF-1 (IGF1) gene, notably CG-137. OBJECTIVE: The current study evaluates the relative contribution of these two factors controlling individual GH sensitivity by measuring the response of serum IGF-1 to a GH injection (IGF-1 generation test) in a sample of 72 children with idiopathic short stature. RESULTS: Although the d3 polymorphism of the GHR contributed 19% to the variance of the IGF-1 response, CG-137 methylation in the IGF-1 promoter contributed 30%, the combined contribution of the two factors totaling 43%. CONCLUSION: Our observation indicates that genetic and epigenetic variation at the GHR and IGF-1 loci play a major role as independent modulators of individual GH sensitivity.


Asunto(s)
Proteínas Portadoras/genética , Resistencia a Medicamentos/genética , Trastornos del Crecimiento , Hormona de Crecimiento Humana/uso terapéutico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Adolescente , Niño , Metilación de ADN , Técnicas de Diagnóstico Endocrino , Epigénesis Genética/fisiología , Femenino , Genotipo , Trastornos del Crecimiento/tratamiento farmacológico , Trastornos del Crecimiento/genética , Trastornos del Crecimiento/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Polimorfismo Genético , Regiones Promotoras Genéticas
20.
Clin Epigenetics ; 7: 22, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25789079

RESUMEN

BACKGROUND: Even if genetics play an important role, individual variation in stature remains unexplained at the molecular level. Indeed, genome-wide association study (GWAS) have revealed hundreds of variants that contribute to the variability of height but could explain only a limited part of it, and no single variant accounts for more than 0.3% of height variance. At the interface of genetics and environment, epigenetics contributes to phenotypic diversity. Quantifying the impact of epigenetic variation on quantitative traits, an emerging challenge in humans, has not been attempted for height. Since insulin-like growth factor 1 (IGF1) controls postnatal growth, we tested whether the CG methylation of the two promoters (P1 and P2) of the IGF1 gene is a potential epigenetic contributor to the individual variation in circulating IGF1 and stature in growing children. RESULTS: Child height was closely correlated with serum IGF1. The methylation of a cluster of six CGs located within the proximal part of the IGF1 P2 promoter showed a strong negative association with serum IGF1 and growth. The highest association was for CG-137 methylation, which contributed 13% to the variance of height and 10% to serum IGF1. CG methylation (studied in children undergoing surgery) was approximately 50% lower in liver and growth plates, indicating that the IGF1 promoters are tissue-differentially methylated regions (t-DMR). CG methylation was inversely correlated with the transcriptional activity of the P2 promoter in mononuclear blood cells and in transfection experiments, suggesting that the observed association of methylation with the studied traits reflects true biological causality. CONCLUSIONS: Our observations introduce epigenetics among the individual determinants of child growth and serum IGF1. The P2 promoter of the IGF1 gene is the first epigenetic quantitative trait locus (QTL(epi)) reported in humans. The CG methylation of the P2 promoter takes place among the multifactorial factors explaining the variation in human stature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA