RESUMEN
Gold nanorods (GNRs) are unique nanoparticles with easily functionalized surfaces, multiple synthesis methods, photothermal conversion, and surface plasmon resonance effects. These properties make GNRs suitable for various biological applications. However, a rapid synthesis of GNRs using less toxic chemicals is needed. The photochemical method is a viable option that can synthesize GNRs quickly while using fewer chemicals. A photochemical method is reported for the synthesis of GNRs using Irgacure-2959 as a reducing agent. This method could be used to synthesize GNRs with a rod-like shape within 30 min. Additionally, GNRs were coated with sericin (GNRs-SC) to further reduce their toxicity in human dermal fibroblast adult cells. Low-level near-infrared (NIR) light was applied to enhance the photothermal therapy of both GNRs and GNRs-SC. The results showed that GNRs and GNRs-SC under low-level NIR light have enhanced antibacterial activity against Staphylococcus aureus and Escherichia coli, as well as antibiofilm activity against S. aureus. Furthermore, GNRs-SC showed good biocompatibility with antibacterial and antibiofilm activities. These results indicate that GNRs-SC are good candidates for various biological applications.
Asunto(s)
Antibacterianos , Escherichia coli , Oro , Rayos Infrarrojos , Nanotubos , Sericinas , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Sericinas/química , Sericinas/farmacología , Nanotubos/química , Oro/química , Oro/farmacología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Procesos Fotoquímicos , Pruebas de Sensibilidad Microbiana , Fibroblastos/efectos de los fármacosRESUMEN
Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices. The present work aims to develop a facile method by covalently grafting zwitterionic and cationic copolymers containing aldehydes to the remaining amine groups of self-polymerized dopamine. Reversible addition-fragmentation chain transfer polymerization was used to copolymerize either zwitterionic 2-methacryloyloxyethyl phosphorylcholine monomer (MPC) or cationic 2-(methacryloyloxy)ethyl trimethylammonium monomer (META) with 4-formyl phenyl methacrylate monomer (FPMA), and the formed copolymers poly(MPC-st-FPMA) and poly(META-st-FPMA) are denoted as MPF and MTF, respectively. MPF and MTF copolymers were then covalently grafted onto the amino groups of polydopamine-coated surfaces. PDA/MPF/MTF-coated surfaces exhibited antibacterial and antifouling properties against S. aureus, E. coli, and bovine serum albumin protein. In addition, they showed excellent viability of normal human lung fibroblast cells MRC-5. We expect the facile surface modification strategy discussed here to be applicable to medical device manufacturing.
Asunto(s)
Antibacterianos , Polímeros , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Polímeros/química , Polímeros/farmacología , Staphylococcus aureus/efectos de los fármacos , Animales , Incrustaciones Biológicas/prevención & control , Escherichia coli/efectos de los fármacos , Bivalvos/química , Propiedades de Superficie , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/farmacología , Albúmina Sérica Bovina/química , Humanos , Metacrilatos/química , Metacrilatos/farmacología , Adhesión Bacteriana/efectos de los fármacos , IndolesRESUMEN
The prevention of biofilm formation on medical devices has become highly challenging in recent years due to its resistance to bactericidal agents and antibiotics, ultimately resulting in chronic infections to medical devices. Therefore, developing inexpensive, biocompatible, and covalently bonded coatings to combat biofilm formation is in high demand. Herein, we report a coating fabricated from tannic acid (TA) as an adhesive and a reducing agent to graft the zwitterionic polymer covalently in a one-step method. Subsequently, silver nanoparticles (AgNPs) are generated in situ to develop a coating with antifouling and antibacterial properties. To enhance the antifouling property and biocompatibility of the coating, the bioinspired zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) was copolymerized with 2-aminoethyl methacrylamide hydrochloride (AEMA) using conventional free-radical polymerization. AEMA moieties containing amino groups were used to facilitate the conjugation of the copolymer with quinone groups on TA through the Michael addition reaction. Three copolymers with different ratios of monomers were synthesized to understand their impacts on fouling resistance: PMPC100, p(MPC80-st-AEMA20), and p(MPC90-st-AEMA10). To impart antibacterial properties to the surface, AgNPs were formed in situ, utilizing the unreacted quinone groups on TA, which can reduce the silver ions. The successful coating of TA and copolymer onto the surfaces was confirmed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and its excellent wettability was verified by the water contact angle (CA). Furthermore, the functionalized coatings showed antibacterial properties against E. coli and S. aureus and remarkably decreased the adhesion of the BSA protein. The surfaces can also prevent the adhesion of bacteria cells, as confirmed by the inhibition zone test. In addition, they showed negligible cytotoxicity to normal human lung fibroblast cells (MRC-5). The as-prepared coatings are potentially valuable for biomedical applications.
RESUMEN
Cellulose nanocrystals (CNCs) were successfully extracted and purified from hemp using an alkaline treatment and bleaching process and subsequently used in conjunction with polyvinyl alcohol to form a composite hydrogel. Cellulose nanocrystals (1-10% (w/v)) were integrated into polyvinyl alcohol, and sodium tetraborate (borax) was employed as a crosslinking agent. Due to the small number of cellulose nanocrystals, no significant peak change was observed in the FT-IR spectra compared to pristine polyvinyl alcohol. The porosity was created upon the removal of the water molecules, and the material was thermally stable up to 200 °C. With the presence of cellulose nanocrystals, the melting temperature was slightly shifted to a higher temperature, while the glass transition temperature remained practically unchanged. The swelling behavior was examined for 180 min in deionized water and PBS solution (pH 7.4) at 37 °C. The degree of swelling of the composite with cellulose nanocrystals was found to be higher than that of pristine PVA hydrogel. The cell viability (%) of the prepared hydrogel with different proportions of cellulose nanocrystals was higher than that of pristine PVA hydrogel. Based on the results, the prepared composite hydrogels from cellulose nanocrystals extracted from hemp and polyvinyl alcohol were revealed to be an excellent candidate for scaffold material for medical usage.
RESUMEN
Infections caused by biofouling have become a serious concern in the health care sector. Multifunctional coatings with antifouling and antibacterial properties are widely used to combat these biofouling related infections. However, in practice macro or micro scratches or damages can happen to the coating, which can act as an active site for microbial deposition and destroy the antifouling or antibacterial functionality of the coating. Considering this fact, we have developed an excellent biocompatible and multifunctional coating with antifouling, antibacterial and self-healing properties. In this study, prebiotic chemistry inspired self-polymerization of aminomalononitrile (AMN) was used as a primary coating layer, which acted as a primer to graft vitamin B5 analogous methacrylamide polymer poly(B5AMA) and zwitterionic compound 2-methacryloyloxyethyl phosphorylcholine (MPC) containing polymer poly (MPC-st-B5AMA) by forming strong hydrogen bonds. B5AMA having multiple polar groups in the structure acted as an intrinsic self-healing material and showed an excellent antifouling property against protein and bacteria, maintaining a good hydration layer similar to the MPC containing polymer. To impart the antibacterial property to the coating, silver nanoparticles have also been incorporated, which showed more than 90% killing efficiency against both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria with significant reduction of their adhesion on the surface. Incorporation of self-healing property into the fouling repelling and antibacterial coating can significantly extend the durability of the multifunctional coating, making it promising for biomedical applications.
Asunto(s)
Incrustaciones Biológicas , Nanopartículas del Metal , Polímeros/farmacología , Incrustaciones Biológicas/prevención & control , Staphylococcus aureus , Escherichia coli , Plata , Antibacterianos/farmacología , Antibacterianos/química , Propiedades de Superficie , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/químicaRESUMEN
Hydrogen peroxide (H2O2) has attracted considerable attention for use as a disinfectant ingredient for various applications over the decades. The use of H2O2 within the safety regulations can avoid its toxicity to human health and the environment. In this study, a paper-based sensor containing green-synthesized silver nanoparticles (P-AgNPs) was developed for use in a smartphone in the determination of the H2O2 concentration. In the synthesis process, an extract of spent coffee grounds was used as a bioreducing agent. The effects of reaction time and silver nitrate (AgNO3) concentration on the green synthesis of silver nanoparticles (AgNPs) were investigated. The optimum conditions for the preparation of P-AgNPs were determined to be 100 mM AgNO3 (P-AgNPs-100) and 15 h synthesis time. The P-AgNPs-100 sensor exhibited high sensitivity with a detection limit of 1.26 mM H2O2, which might be suitable for the detection of H2O2-based household and beverage sanitizers. The H2O2 detection capability of P-AgNPs-100 was comparable to that of a commercial strip sensor. Furthermore, P-AgNPs-100 had a detection efficiency of more than 95% after long-term storage for 100 days.
Asunto(s)
Café , Nanopartículas del Metal , Humanos , Peróxido de Hidrógeno , Plata , BebidasRESUMEN
The use of active packaging has attracted considerable attention over recent years to prevent and decrease the risk of bacterial and viral infection. Thus, this work aims to develop active packaging using a paper coated with green-synthesized silver nanoparticles (AgNPs). Effects of different silver nitrate (AgNO3) concentrations, viz. 50, 100, 150, and 200 mM (AgNPs-50, AgNPs-100, AgNPs-150, and AgNPs-200, respectively), on green synthesis of AgNPs and coated paper properties were investigated. A bio-reducing agent from mangosteen peel extract (ex-Garcinia mangostana (GM)) and citric acid as a crosslinking agent for a starch/polyvinyl alcohol matrix were also used in the synthetic process. The presence of AgNPs, ex-GM, and citric acid indicated the required synergistic antibacterial activities for gram-positive and gram-negative bacteria. The paper coated with AgNPs-150 showed complete inactivation of virus within 1 min. Water resistance and tensile strength of paper improved when being coated with AgNPs-150. The tensile strength of the coated paper was found to be in the same range as that of a common packaging paper. Result revealed that the obtained paper coated with AgNPs was proven to be effective in antibacterial and antiviral activities; hence, it could be used as an active packaging material for items that require manual handling by a number of people.
RESUMEN
To avoid bacterial and viral infections on food products, the use of antibacterial and antiviral packaging offers great benefit to the food industry. In this study, the coating of paper packaging with silver-decorated magnetic particles (Ag@Fe3O4) was developed. The Ag@Fe3O4 was prepared by a facile and environmentally friendly method using extracted spent coffee grounds (ex-SCG). The effects of Ag@Fe3O4 content on properties of coated paper were investigated. The overall properties of coated paper improved when the Ag@Fe3O4 content increased up to 0.15%w/v. An increase in tensile strength of 154.01% and a decrease in water vapor permeability of 48.50% were found in coated paper with 0.15%w/v Ag@Fe3O4. Furthermore, the coated paper also exhibited the synergistic effect on antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The release of metal ions in food simulants and kinetic release parameters were also studied. The release of silver ions and ferrous ions in food simulants met the requirement of overall migration limit of the European Standard. The paper coated with 0.15%w/v Ag@Fe3O4 had better capabilities to maintain quality and extend shelf-life of tomatoes. The obtained Ag@Fe3O4 coated paper is promising for bioactive food packaging to retain food freshness. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-022-04636-0.
RESUMEN
Conventional drug delivery systems often cause side effects and gastric degradation. Novel drug delivery systems must be developed to decrease side effects and increase the efficacy of drug delivery. This research aimed to fabricate hydrogel beads for use as a drug delivery system based on basil seed mucilage (BSM), sodium alginate (SA), and magnetic particles (MPs). The Taguchi method and Grey relational analysis were used for the design and optimization of the hydrogel beads. Three factors, including BSM, SA, and MPs at four levels were designed by L-16 orthogonal arrays. BSM was the main factor influencing bead swelling, drug release rate at pH 7.4, and release of antioxidants at pH 1.2 and 7.4. In addition, SA and MPs mainly affected drug loading and drug release rate in acidic medium, respectively. Grey relational analysis indicated that the composition providing optimal overall properties was 0.2 vol% BSM, 0.8 vol% SA, and 2.25 vol% MPs. Based on the findings of this work, BSM/SA/MPs hydrogel beads have the potential to be used as a pH-sensitive alternative material for drug delivery in colon-specific systems.
RESUMEN
Treatment of infections using wound dressing integrated with multiple functions such as antibacterial activity, non-toxicity, and good mechanical properties has attracted much attention. In this study, carboxymethyl starch/polyvinyl alcohol/citric acid (CMS/PVA/CA) hydrogels containing silver nanoparticles (AgNPs) were prepared. The CMS, PVA and CA were used as polymer matrix and bio-based reducing agents for green synthesis of AgNPs. Silver nitrate (AgNO3) concentrations of 50, 100, and 150 mM were used to obtain nanocomposite hydrogels containing different AgNPs concentrations (AgNPs-50, AgNPs-100 and AgNPs-150, respectively). The minimum inhibitory concentration against E. coli and S. aureus was observed in CMS/PVA/CA hydrogels containing AgNPs-50. Uniform dispersion of AgNPs-100 in the hydrogel provided the highest storage modulus at 56.4 kPa. AgNPs-loaded hydrogels showed low toxicity to human fibroblast cells indicating good biocompatibility. Incorporation of AgNPs demonstrated an enhancement in antibacterial properties and overall mechanical properties, which makes these nanocomposite hydrogels attractive as novel wound dressing materials.