Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943005

RESUMEN

Cyclosporin A (CsA) induces DNA double-strand breaks in LIG4 syndrome fibroblasts, specifically upon transit through S-phase. The basis underlying this has not been described. CsA-induced genomic instability may reflect a direct role of Cyclophilin A (CYPA) in DNA repair. CYPA is a peptidyl-prolyl cis-trans isomerase (PPI). CsA inhibits the PPI activity of CYPA. Using an integrated approach involving CRISPR/Cas9-engineering, siRNA, BioID, co-immunoprecipitation, pathway-specific DNA repair investigations as well as protein expression interaction analysis, we describe novel impacts of CYPA loss and inhibition on DNA repair. We characterise a direct CYPA interaction with the NBS1 component of the MRE11-RAD50-NBS1 complex, providing evidence that CYPA influences DNA repair at the level of DNA end resection. We define a set of genetic vulnerabilities associated with CYPA loss and inhibition, identifying DNA replication fork protection as an important determinant of viability. We explore examples of how CYPA inhibition may be exploited to selectively kill cancers sharing characteristic genomic instability profiles, including MYCN-driven Neuroblastoma, Multiple Myeloma and Chronic Myelogenous Leukaemia. These findings propose a repurposing strategy for Cyclophilin inhibitors.

2.
Nat Commun ; 13(1): 7343, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446791

RESUMEN

Activation of client protein kinases by the HSP90 molecular chaperone system is affected by phosphorylation at multiple sites on HSP90, the kinase-specific co-chaperone CDC37, and the kinase client itself. Removal of regulatory phosphorylation from client kinases and their release from the HSP90-CDC37 system depends on the Ser/Thr phosphatase PP5, which associates with HSP90 via its N-terminal TPR domain. Here, we present the cryoEM structure of the oncogenic protein kinase client BRAFV600E bound to HSP90-CDC37, showing how the V600E mutation favours BRAF association with HSP90-CDC37. Structures of HSP90-CDC37-BRAFV600E complexes with PP5 in autoinhibited and activated conformations, together with proteomic analysis of its phosphatase activity on BRAFV600E and CRAF, reveal how PP5 is activated by recruitment to HSP90 complexes. PP5 comprehensively dephosphorylates client proteins, removing interaction sites for regulatory partners such as 14-3-3 proteins and thus performing a 'factory reset' of the kinase prior to release.


Asunto(s)
Proteínas HSP90 de Choque Térmico , Humanos , Proteínas de Ciclo Celular/genética , Chaperoninas/genética , Proteínas HSP90 de Choque Térmico/genética , Chaperonas Moleculares , Monoéster Fosfórico Hidrolasas , Proteómica , Proteínas Proto-Oncogénicas B-raf
3.
Am J Hum Genet ; 104(5): 957-967, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006512

RESUMEN

Replicating the human genome efficiently and accurately is a daunting challenge involving the duplication of upward of three billion base pairs. At the core of the complex machinery that achieves this task are three members of the B family of DNA polymerases: DNA polymerases α, δ, and ε. Collectively these multimeric polymerases ensure DNA replication proceeds at optimal rates approaching 2 × 103 nucleotides/min with an error rate of less than one per million nucleotides polymerized. The majority of DNA replication of undamaged DNA is conducted by DNA polymerases δ and ε. The DNA polymerase α-primase complex performs limited synthesis to initiate the replication process, along with Okazaki-fragment synthesis on the discontinuous lagging strand. An increasing number of human disorders caused by defects in different components of the DNA-replication apparatus have been described to date. These are clinically diverse and involve a wide range of features, including variable combinations of growth delay, immunodeficiency, endocrine insufficiencies, lipodystrophy, and cancer predisposition. Here, by using various complementary approaches, including classical linkage analysis, targeted next-generation sequencing, and whole-exome sequencing, we describe distinct missense and splice-impacting mutations in POLA1 in five unrelated families presenting with an X-linked syndrome involving intellectual disability, proportionate short stature, microcephaly, and hypogonadism. POLA1 encodes the p180 catalytic subunit of DNA polymerase α-primase. A range of replicative impairments could be demonstrated in lymphoblastoid cell lines derived from affected individuals. Our findings describe the presentation of pathogenic mutations in a catalytic component of a B family DNA polymerase member, DNA polymerase α.


Asunto(s)
ADN Polimerasa I/genética , ADN Primasa/genética , Enfermedades Genéticas Ligadas al Cromosoma X/etiología , Trastornos del Crecimiento/etiología , Hipogonadismo/etiología , Discapacidad Intelectual/etiología , Microcefalia/etiología , Mutación , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Genotipo , Trastornos del Crecimiento/patología , Humanos , Hipogonadismo/patología , Lactante , Discapacidad Intelectual/patología , Masculino , Microcefalia/patología , Persona de Mediana Edad , Linaje , Secuenciación del Exoma
4.
Hum Mol Genet ; 26(1): 19-32, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798113

RESUMEN

Defects in OFD1 underlie the clinically complex ciliopathy, Oral-Facial-Digital syndrome Type I (OFD Type I). Our understanding of the molecular, cellular and clinical consequences of impaired OFD1 originates from its characterised roles at the centrosome/basal body/cilia network. Nonetheless, the first described OFD1 interactors were components of the TIP60 histone acetyltransferase complex. We find that OFD1 can also localise to chromatin and its reduced expression is associated with mis-localization of TIP60 in patient-derived cell lines. TIP60 plays important roles in controlling DNA repair. OFD Type I cells exhibit reduced histone acetylation and altered chromatin dynamics in response to DNA double strand breaks (DSBs). Furthermore, reduced OFD1 impaired DSB repair via homologous recombination repair (HRR). OFD1 loss also adversely impacted upon the DSB-induced G2-M checkpoint, inducing a hypersensitive and prolonged arrest. Our findings show that OFD Type I patient cells have pronounced defects in the DSB-induced histone modification, chromatin remodelling and DSB-repair via HRR; effectively phenocopying loss of TIP60. These data extend our knowledge of the molecular and cellular consequences of impaired OFD1, demonstrating that loss of OFD1 can negatively impact upon important nuclear events; chromatin plasticity and DNA repair.


Asunto(s)
Cromatina/metabolismo , Cilios/patología , Reparación del ADN/genética , Síndromes Orofaciodigitales/genética , Síndromes Orofaciodigitales/patología , Proteínas/metabolismo , Recombinación Genética/genética , Acetilación , Puntos de Control del Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Cilios/enzimología , Roturas del ADN de Doble Cadena , Fibroblastos , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Síndromes Orofaciodigitales/metabolismo , Proteínas/antagonistas & inhibidores , Proteínas/genética , ARN Interferente Pequeño/genética
5.
PLoS Genet ; 9(3): e1003360, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516378

RESUMEN

Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.


Asunto(s)
Replicación del ADN/genética , Enanismo/genética , Trastornos del Crecimiento/genética , Microcefalia/genética , Micrognatismo/genética , Complejo de Reconocimiento del Origen/genética , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Centriolos/genética , Centriolos/metabolismo , Cilios/genética , Cilios/fisiología , Microtia Congénita , Oído/anomalías , Facies , Trastornos del Crecimiento/etiología , Humanos , Micrognatismo/etiología , Rótula/anomalías , Proteínas Serina-Treonina Quinasas/genética , Fase S/genética
6.
PLoS Genet ; 7(8): e1002247, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901111

RESUMEN

A novel microduplication syndrome involving various-sized contiguous duplications in 17p13.3 has recently been described, suggesting that increased copy number of genes in 17p13.3, particularly PAFAH1B1, is associated with clinical features including facial dysmorphism, developmental delay, and autism spectrum disorder. We have previously shown that patient-derived cell lines from individuals with haploinsufficiency of RPA1, a gene within 17p13.3, exhibit an impaired ATR-dependent DNA damage response (DDR). Here, we show that cell lines from patients with duplications specifically incorporating RPA1 exhibit a different although characteristic spectrum of DDR defects including abnormal S phase distribution, attenuated DNA double strand break (DSB)-induced RAD51 chromatin retention, elevated genomic instability, and increased sensitivity to DNA damaging agents. Using controlled conditional over-expression of RPA1 in a human model cell system, we also see attenuated DSB-induced RAD51 chromatin retention. Furthermore, we find that transient over-expression of RPA1 can impact on homologous recombination (HR) pathways following DSB formation, favouring engagement in aberrant forms of recombination and repair. Our data identifies unanticipated defects in the DDR associated with duplications in 17p13.3 in humans involving modest RPA1 over-expression.


Asunto(s)
Duplicación Cromosómica/genética , Dosificación de Gen , Inestabilidad Genómica , Proteína de Replicación A/genética , Trisomía/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Células CHO , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas Humanos Par 17/genética , Cricetinae , Roturas del ADN de Doble Cadena , Daño del ADN , Expresión Génica , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mosaicismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Fase S
7.
Mech Ageing Dev ; 132(8-9): 366-73, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21352845

RESUMEN

Cullin's encode the structural components for one of the most abundant E3 ubiquitin ligase families in eukaryotes accounting for as many as 400 distinct E3 ubiquitin ligases. Because of their modular assembly involving combinations of multiple distinct adaptor and substrate receptor proteins, it comes as no surprise that these E3's are implicated in a plethora of fundamental biochemical processes ranging from DNA replication and repair to transcription and development. Herein, we focus on one member of the cullin family, namely the Cullin 4-RING E3 ligases (CRL4's). More specifically, we overview what has been learned about some of the functions of CRL4's from various model systems. We discuss the unexpected association of defective CUL4B with syndromal X-linked mental retardation in humans and speculate on the biochemical consequences and clinical implications of defective CRL4 function. In particular, mutations in CUL4B highlight a previously unappreciated role for CRL4's in neuronal function and cognition in humans.


Asunto(s)
Proteínas Cullin , Reparación del ADN , Replicación del ADN , Discapacidad Intelectual Ligada al Cromosoma X/enzimología , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Cognición , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Neuronas/enzimología , Neuronas/patología , Ubiquitina-Proteína Ligasas/genética
8.
Cell Cycle ; 9(11): 2065-70, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20495382

RESUMEN

The pairing of sister chromatids in interphase facilitates error-free homologous recombination (HR). Sister chromatids are held together by cohesin, one of three Structural Maintenance of Chromosomes (SMC) complexes. In mitosis, chromosome condensation is controlled by another SMC complex, condensin, and the type II topoisomerase (Top2). In prophase, cohesin is stripped from chromosome arms, but remains at centromeres until anaphase, whereupon it is removed via proteolytic cleavage. The third SMC complex, Smc5/6, is generally described as a regulator of HR-mediated DNA repair. However, cohesin and condensin are also required for DNA repair, and HR genes are not essential for cell viability, but the SMC complexes are. Smc5/6 null mutants die in mitosis, and in fission yeast, Smc5/6 hypomorphs show lethal mitoses following genotoxic stress, or when combined with a Top2 mutant, top2-191. We found these mitotic defects are due to retention of cohesin on chromosome arms. We also show that Top2 functions in the cohesin cycle, and accumulating data suggests this is not related to its decatenation activity. Thus the SMC complexes and Top2 functionally interact, and any DNA repair function ascribed to Smc5/6 is likely a reflection of a more fundamental role in the regulation of chromosome structure.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Inestabilidad Genómica , Mitosis , Mutación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Cohesinas
9.
Hum Mol Genet ; 19(7): 1324-34, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20064923

RESUMEN

CUL4A and B encode subunits of E3-ubiquitin ligases implicated in diverse processes including nucleotide excision repair, regulating gene expression and controlling DNA replication fork licensing. But, the functional distinction between CUL4A and CUL4B, if any, is unclear. Recently, mutations in CUL4B were identified in humans associated with mental retardation, relative macrocephaly, tremor and a peripheral neuropathy. Cells from these patients offer a unique system to help define at the molecular level the consequences of defective CUL4B specifically. We show that these patient-derived cells exhibit sensitivity to camptothecin (CPT), impaired CPT-induced topoisomerase I (Topo I) degradation and ubiquitination, thereby suggesting Topo I to be a novel Cul4-dependent substrate. Consistent with this, we also find that these cells exhibit increased levels of CPT-induced DNA breaks. Furthermore, over-expression of known CUL4-dependent substrates including Cdt1 and p21 appear to be a feature of these patient-derived cells. Collectively, our findings highlight the interplay between CUL4A and CUL4B and provide insight into the pathogenesis of CUL4B-deficiency in humans.


Asunto(s)
Anomalías Múltiples/genética , Camptotecina/farmacología , Proteínas Cullin/genética , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Mutación , Línea Celular , Proteínas Cullin/metabolismo , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Síndrome , Ubiquitinación
10.
PLoS One ; 4(8): e6750, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19707600

RESUMEN

SUMO is a ubiquitin-like protein that is post-translationally attached to one or more lysine residues on target proteins. Despite having only 18% sequence identity with ubiquitin, SUMO contains the conserved betabetaalphabetabetaalphabeta fold present in ubiquitin. However, SUMO differs from ubiquitin in having an extended N-terminus. In S. pombe the N-terminus of SUMO/Pmt3 is significantly longer than those of SUMO in S. cerevisiae, human and Drosophila. Here we investigate the role of this N-terminal region. We have used two dimensional gel electrophoresis to demonstrate that S. pombe SUMO/Pmt3 is phosphorylated, and that this occurs on serine residues at the extreme N-terminus of the protein. Mutation of these residues (in pmt3-1) results in a dramatic reduction in both the levels of high Mr SUMO-containing species and of total SUMO/Pmt3, indicating that phosphorylation of SUMO/Pmt3 is required for its stability. Despite the significant reduction in high Mr SUMO-containing species, pmt3-1 cells do not display an aberrant cell morphology or sensitivity to genotoxins or stress. Additionally, we demonstrate that two lysine residues in the N-terminus of S. pombe SUMO/Pmt3 (K14 and K30) can act as acceptor sites for SUMO chain formation in vitro. Inability to form SUMO chains results in aberrant cell and nuclear morphologies, including stretched and fragmented chromatin. SUMO chain mutants are sensitive to the DNA synthesis inhibitor, hydroxyurea (HU), but not to other genotoxins, such as UV, MMS or CPT. This implies a role for SUMO chains in the response to replication arrest in S. pombe.


Asunto(s)
Schizosaccharomyces/citología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/fisiología , Daño del ADN , Electroforesis en Gel Bidimensional , Hidroxiurea/farmacología , Fosforilación , Schizosaccharomyces/efectos de los fármacos , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/química
11.
Mol Cell Biol ; 29(16): 4363-75, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19528228

RESUMEN

The function of the essential cohesin-related Smc5-Smc6 complex has remained elusive, though hypomorphic mutants have defects late in recombination, in checkpoint maintenance, and in chromosome segregation. Recombination and checkpoints are not essential for viability, and Smc5-Smc6-null mutants die in lethal mitoses. This suggests that the chromosome segregation defects may be the source of lethality in irradiated Smc5-Smc6 hypomorphs. We show that in smc6 mutants, following DNA damage in interphase, chromosome arm segregation fails due to an aberrant persistence of cohesin, which is normally removed by the Separase-independent pathway. This postanaphase persistence of cohesin is not dependent on DNA damage, since the synthetic lethality of smc6 hypomorphs with a topoisomerase II mutant, defective in mitotic chromosome structure, is also due to the retention of cohesin on undamaged chromosome arms. In both cases, Separase overexpression bypasses the defect and restores cell viability, showing that defective cohesin removal is a major determinant of the mitotic lethality of Smc5-Smc6 mutants.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas/metabolismo , Mitosis/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Animales , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Daño del ADN , Reparación del ADN , Endopeptidasas/genética , Endopeptidasas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Separasa , Cohesinas
12.
J Biol Chem ; 282(28): 20388-94, 2007 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-17502373

RESUMEN

We describe two RING finger proteins in the fission yeast Schizosaccharomyces pombe, Rfp1 and Rfp2. We show that these proteins function redundantly in DNA repair. Rfp1 was isolated as a Chk1-interacting protein in a two-hybrid screen and has high amino acid sequence similarity to Rfp2. Deletion of either gene does not cause a phenotype, but a double deletion (rfp1Deltarfp2Delta) showed poor viability and defects in cell cycle progression. These cells are also sensitive to DNA-damaging agents, although they maintained normal checkpoint signaling to Chk1. Rfp1 and Rfp2 are most closely related to human Rnf4, and we showed that Rnf4 can substitute functionally for Rfp1 and/or Rfp2. The double mutants also showed significantly increased levels of protein SUMOylation, and we identified an S. pombe Ulp2/Smt4 homolog that, when overexpressed, reduced SUMO levels and suppressed the DNA damage sensitivity of rfp1Delta rfp2Delta cells.


Asunto(s)
Ciclo Celular/fisiología , Reparación del ADN/fisiología , ADN de Hongos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN de Hongos/genética , Eliminación de Gen , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Homología de Secuencia de Aminoácido , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...