Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(4): 103413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442558

RESUMEN

Photoperiod is an important environmental factor that influences seasonal reproduction behavior in birds. Birds translate photoperiodic information into neuroendocrine signals through deep brain photoreceptors (DBPs). OPN5 has been considered candidate DBPs involved in regulating seasonal reproduction in birds. We found that OPN5 could mediate light to regulate the follicle development in ducks. In this study, we further verified the effect of OPN5 on follicular development in Shan Partridge ducks by immunizing against the extracellular domain (ECD) of OPN5. We investigated the specific regulatory mechanism of photoperiod mediated by OPN5 on the reproductive activity of ducks. The trial randomly divided 120 Shan Partridge ducks into 3 groups with different treatments: the immunization of OPN5 group was done at d0, d15, d30, and d40 with 1 mL of vaccine containing OPN5 protein (thus containing 1, 1, 0.5, and 0.5 mg of OPN5-KLH protein), and the control group (CS and CL groups) was injected at the same time with the same dose of OPN5-uncontained blank vaccine. The group of CS (900 lux), OPN5 (600 lux), and CL (600 lux) lasted for 40 d in 12 L:12 D photoperiods, respectively. Then, the groups of CS, OPN5, and CL subsequently received 12 L:12 D, 12 L:12 D, and 17 L:7 D light treatments for 33 d, respectively. The ducks were caged in 3 constant rooms with the same feeding conditions for each group, free water, and limited feeding (150 g per duck each day). Duck serum and tissue samples were collected at d 40, d 62, and d 73 (n = 12). It was found that before prolonged light, the group of immunization (group OPN5) and the group of strong light intensity (group CS) were higher than the group of CL in egg production. Subsequent to prolonged light, the group CL in egg production rose about the same as the group immunization, while the strong light group (group CS) was lower. Group OPN5 increased the ovarian index of ducks, and both the immunization of group OPN5 and group CL (extended light) increased the thickness of the granular layer and promoted the secretion of E2, P4, LH, and PRL hormones. Compared with group CS, group CL and OPN5 increased the mRNA level and protein expression of OPN5 in the hypothalamus on d 62 and d 73 (P < 0.05). The gene or protein expression patterns of GnRH, TRH, TSHß, DIO2, THRß, VIP, and PRL were positively correlated with OPN5, whereas the gene expression patterns of GnIH and DIO3 were negatively correlated with OPN5. The results showed that immunization against OPN5 could activate the corresponding transmembrane receptors to promote the expression of OPN5, up-regulate the expression of TSHß and DIO2, and then regulate the HPG axis-related genes to facilitate the follicular development of Shan Partridge ducks. In addition, in this experiment, prolonging the photoperiod or enhancing the light intensity could also enhance follicle development, but the effect was not as significant as immunizing against OPN5. Our results will offer beneficial data and more supportive shreds of evidence in favor of elucidating the role of OPN5 in relation to photoperiods and reproduction.


Asunto(s)
Fotoperiodo , Vacunas , Animales , Patos/fisiología , Pollos , Reproducción , Inmunización/veterinaria
2.
Poult Sci ; 101(10): 102024, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35986948

RESUMEN

This study sought to understand the regulation mechanism of OPN5 through the TSH-DIO2/DIO3 pathway mediated photoperiod on the breeding activity of short-day breeding birds. In this study, the reproductive activity of Magang goose was regulated by artificial light, and the reproductive activity of the ganders were determined according to the daily laying rate of female geese. The testicular development and the serum reproductive hormone concentrations of ganders were measured during the reproductive period (d 0), the reproductive degeneration period (d 13 and 27) and the resting period (d 45). The mRNA and protein expression patterns of OPN5, the HPG axis reproductive genes, and TSH-DIO2/DIO3 pathway related genes were examined. Results showed that the laying rate of geese and the gonadal indices (GSI) decreased gradually after the photoperiod increased. Histological observation found that the spermatogenic function of the testis was normal on d 0 and 13, while degeneration occurred by d 27 and 45. Serum testosterone, FSH, and LH concentration showed a slight increase on d 13, followed by a sharp decrease on d 27 and 45 (P < 0.01), while PRL concentrations were low on d 0 and 13, and increased rapidly on d 27 and 45 (P < 0.01).The expression pattern of GnRH, FSH, LH, and THRß mRNA were similar, with high levels on d 0 and 13 and a decreasing trend on d 27 and 45 (P < 0.05 or P < 0.01); and GnRHR mRNA levels were higher on d 13 (P < 0.05), but then had decreased by d 27 and 45 (P < 0.01). The expression pattern of GnIH and GnIHR was similar, which was opposite to that of GnRHR. VIP, PRL, and PRLR increased gradually and peaked on d 45 (P < 0.01). The expression trend of TRH, TSHß, and DIO2 was similar to that of GnRHR, and the expression abundance increased on d 13, and then decreased on d 27 and 45. GnRH protein expression was significantly higher than during the other 3 periods (P < 0.01) while the GnIH protein levels were extremely low on d 0, had gradually increased by d 13, and significantly increased by d 27 and 45 (P < 0.01). The protein expression trends of THR and DIO2 were similar to that of GNIH. DIO3 protein expression was low on d 0 and 13, and increased by d 27 and 45. These results suggest that when the photoperiod increased, the hypothalamus OPN5 gene and protein were upregulated and the pituitary TSHß, TSHR, and hypothalamus THRß, TRH, and DIO2 were downregulated, and thus the reproductive activity of geese was inhibited.


Asunto(s)
Gansos , Fotoperiodo , Animales , Pollos/metabolismo , Femenino , Hormona Folículo Estimulante , Gansos/fisiología , Hormona Liberadora de Gonadotropina , Masculino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducción/fisiología , Testosterona , Tirotropina
3.
Sci Rep ; 11(1): 7573, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828187

RESUMEN

In quantitative PCR research, appropriate reference genes are key to determining accurate mRNA expression levels. In order to screen the reference genes suitable for detecting gene expression in tissues of the reproductive axis, a total of 420 (males and females = 1:5) 3-year-old Magang geese were selected and subjected to light treatment. The hypothalamus, pituitary and testicular tissues were subsequently collected at different stages. Ten genes including HPRT1, GAPDH, ACTB, LDHA, SDHA, B2M, TUBB4, TFRC, RPS2 and RPL4 were selected as candidate reference genes. The expression of these genes in goose reproductive axis tissues was detected by real-time fluorescent quantitative PCR. The ΔCT, geNorm, NormFinder and BestKeeper algorithms were applied to sort gene expression according to stability. The results showed that ACTB and TUBB4 were the most suitable reference genes for the hypothalamic tissue of Magang goose in the three breeding stages; HPRT1 and RPL4 for pituitary tissue; and HPRT1 and LDHA for testicular tissue. For all three reproductive axis tissues, ACTB was the most suitable reference gene, whereas the least stable reference gene was GAPDH. Altogether, these results can provide references for tissue expression studies in geese under light treatment.


Asunto(s)
Gansos/genética , Gansos/fisiología , Actinas/genética , Algoritmos , Animales , Proteínas Aviares/genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Hipotálamo/fisiología , Luz , Masculino , Hipófisis/fisiología , Reproducción/genética , Reproducción/fisiología , Testículo/fisiología , Tubulina (Proteína)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA