RESUMEN
(), a core clock gene, encodes a circadian rhythm protein which has been shown to control mammary metabolism in rodents. Whether regulates milk component synthesis such as α-casein protein in bovine mammary cells is unknown. Thus, we used gene silencing technology to determine if silencing could affect α-casein synthesis and cell growth in cultured primary bovine mammary epithelial cells (BMEC). The BMEC were established by enzymatic digestion of mammary tissue from mid-lactation cows. A transient-transfection technique was used to insert a small interfering RNA (siRNA) oligonucleotide specific for to inhibit transcription. Control and siRNA-transfected cells were cultured for 48 h. qRT-PCR and ELISA analysis showed that silencing enhanced the synthesis of 2 kinds of α-casein ( < 0.05) through upregulating the mRNA level of and ( < 0.01). Furthermore, the 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) results demonstrated that cell proliferation was not affected ( > 0.05). These data led us to hypothesize that PER2 protein may potentially play an important role in the control of milk protein synthesis and, hence, represents a target that can be used to regulate protein synthesis rate during lactation.
Asunto(s)
Caseínas/metabolismo , Bovinos/fisiología , Leche/química , Animales , Caseínas/genética , Bovinos/genética , Proliferación Celular , Células Epiteliales/fisiología , Femenino , Silenciador del Gen , Lactancia/fisiología , Glándulas Mamarias Animales/metabolismo , Leche/metabolismo , ARN Interferente PequeñoRESUMEN
Micro/nanotopographical modifications on titanium surfaces constitute a new process to increase osteoblast response to enhance bone formation. In this study, we utilized alkali heat treatment at high (SB-AH1) and low temperatures (SB-AH2) to nano-modify sandblasted titanium with microtopographical surfaces. Then, we evaluated the surface properties, biocompatibility and osteogenic capability of SB-AH1 and SB-AH2 in vitro and in vivo, and compared these with conventional sandblast-acid etching (SLA) and Ti control surfaces. SB-AH1 and SB-AH2 surfaces exhibited micro/nanotopographical modifications of nano-needle structures and nano-porous network layers, respectively, compared with the sole microtopographical surface of macro and micro pits on the SLA surface and the relatively smooth surface on the Ti control. SB-AH1 and SB-AH2 showed different roughness and elemental components, but similar wettability. MC3T3-E1 preosteoblasts anchored closely on the nanostructures of SB-AH1 and SB-AH2 surfaces, and these two surfaces more significantly enhanced cell proliferation and alkaline phosphatase (ALP) activity than others, while the SB-AH2 surface exhibited better cell proliferation and higher ALP activity than SB-AH1. All four groups of titanium domes with self-tapping screws were implanted in rabbit calvarial bone models, and these indicated that SB-AH1 and SB-AH2 surfaces achieved better peri-implant bone formation and implant stability, while the SB-AH2 surface achieved the best percentage of bone-implant contact (BIC%). Our study demonstrated that the micro/nanotopographical surface generated by sandblasting and alkali heat treatment significantly enhanced preosteoblast proliferation, ALP activity and bone formation in vitro and in vivo, and nano-porous network topography may further induce better preosteoblast proliferation, ALP activity and BIC%.