Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1234824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37772084

RESUMEN

Iron, as the most abundant metallic element within the human organism, is an indispensable ion for sustaining life and assumes a pivotal role in governing glucose and lipid metabolism, along with orchestrating inflammatory responses. The presence of diabetes mellitus (DM) can induce aberrant iron accumulation within the corporeal system. Consequentially, iron overload precipitates a sequence of important adversities, subsequently setting in motion a domino effect wherein ferroptosis emerges as the utmost pernicious outcome. Ferroptosis, an emerging variant of non-apoptotic regulated cell death, operates independently of caspases and GSDMD. It distinguishes itself from alternative forms of controlled cell death through distinctive morphological and biochemical attributes. Its principal hallmark resides in the pathological accrual of intracellular iron and the concomitant generation of iron-driven lipid peroxides. Diabetic retinopathy (DR), established as the predominant cause of adult blindness, wields profound influence over the well-being and psychosocial strain experienced by afflicted individuals. Presently, an abundance of research endeavors has ascertained the pervasive engagement of iron and ferroptosis in the microangiopathy inherent to DR. Evidently, judicious management of iron overload and ferroptosis in the early stages of DR bears the potential to considerably decelerate disease progression. Within this discourse, we undertake a comprehensive exploration of the regulatory mechanisms governing iron homeostasis and ferroptosis. Furthermore, we expound upon the subsequent detriments induced by their dysregulation. Concurrently, we elucidate the intricate interplay linking iron overload, ferroptosis, and DR. Delving deeper, we engage in a comprehensive deliberation regarding strategies to modulate their influence, thereby effecting prospective interventions in the trajectory of DR's advancement or employing them as therapeutic modalities.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Ferroptosis , Sobrecarga de Hierro , Ursidae , Adulto , Animales , Humanos , Retinopatía Diabética/etiología , Hierro , Estudios Prospectivos , Sobrecarga de Hierro/complicaciones
2.
Microb Biotechnol ; 14(4): 1827-1838, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34173722

RESUMEN

Discovering new serological markers of Mycobacterium tuberculosis (MTB) infection and establishing a rapid and efficient detection technology is of great significance for the prevention and control of tuberculosis. In this study, we established an exponentially modified protein abundance index (emPAI) value-assisted strategy to investigate and improve the screening efficiency of serological biomarkers of tuberculosis. First, we used LC-MS/MS to analyse MTB culture filtrate proteins (MTB-CFPs), and 632 MTB proteins were identified. Then, the characteristic values of MTB-CFPs - including emPAI value, molecular weight (Mw), isoelectric point (pI), grand average of hydropathy (GRAVY), transmembrane domain (TMD) and functional groups were calculated. Next, we successfully prepared 10 MTB proteins with emPAI value > 1.0 and recombinantly expressed these proteins in Escherichia coli. At the same time, 3 MTB proteins with emPAI between 0.1 and 0.5 were randomly selected as the control groups, and the immunogenicity of the recombinant MTB proteins was detected using ELISA. The sensitivity and receiver operating characteristic (ROC) curves were calculated for each recombinant MTB protein. The results showed that the areas under the curve (AUC) value of Rv2031c, Rv0577, Rv0831c, Rv0934 and Rv3248c were all higher than those of Rv3875 (AUC, 0.6643). Further analysis of the relationship between emPAI value and antibody sensitivity, AUC value and antibody affinity in mice immunized with recombinant MTB protein showed that emPAI values were positively correlated with them, and R-squared value ranged from 0.64 to 0.79. The only exception was ESAT-6 (encoded by the Rv3875 gene), which AUC value was relatively low owing to its strong immunosuppressive properties. This study provides a rationale for the serological marker screening of emPAI-assisted tuberculosis clinical test. The results also provide new technical support for the screening of candidate serological markers of infectious diseases in the future.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Antígenos Bacterianos , Proteínas Bacterianas/genética , Biomarcadores , Cromatografía Liquida , Ratones , Mycobacterium tuberculosis/genética , Espectrometría de Masas en Tándem , Tuberculosis/diagnóstico
3.
Anal Chem ; 93(12): 5291-5300, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33734672

RESUMEN

An innovative biosensing assay was developed for simplified, cost-effective, and sensitive detection. By rapid, direct treatment of target proteins with iron porphyrin (TPPFe) in situ, a carboxyl group of amino acid conjugates with an Fe atom of the TPPFe molecule, forming a stable protein complex. We have shown that this complex not only maintains the integrity and functions of original proteins but also acquires peroxidase activity that can turn TMB to a comparably visible signal like that in ELISA. This study is unique since such conversion is difficult to achieve with standard chemical modification or molecular biology methods. In addition, the proposed immunoassay is superior to traditional ELISA as it eliminates an expensive and complicated cross-linking process of an enzyme-labeled antibody. From a practical point of view, we extended this assay to rapid detection of clinically relevant proteins and glucose in blood samples. The results show that this simple immunoassay provides clinical diagnosis, food safety, and environmental monitoring in an easy-to-implement manner.


Asunto(s)
Técnicas Biosensibles , Ensayo de Inmunoadsorción Enzimática , Glucosa , Inmunoensayo , Hierro
4.
Front Mol Neurosci ; 14: 640533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33716669

RESUMEN

Neuropathic pain is a kind of chronic pain that remains difficult to treat due to its complicated underlying mechanisms. Accumulating evidence has indicated that enhanced synaptic plasticity of nociceptive interneurons in the superficial spinal dorsal horn contributes to the development of neuropathic pain. Neuroligin1 (NL1) is a type of excitatory postsynaptic adhesion molecule, which can mediate excitatory synaptic activity, hence promoting neuronal activation. Vglut2 is the most common marker of excitatory glutamatergic neurons. To explore the role of NL1 in excitatory neurons in nociceptive regulation, we used transgenic mice with cre recombinase expression driven by the Vglut2 promoter combined with viral vectors to knockdown the expression of NL1 in excitatory neurons in the spinal dorsal horn. We found that NL1 was upregulated in the L4-L6 spinal dorsal horn in Vglut2-cre+/- mouse subjected to spared nerve injury (SNI). Meanwhile, the expression of phosphorylated cofilin (p-cofilin) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit 1 (GluR1) was also increased. Spinal microinjection of a cre-dependent NL1-targeting RNAi in Vglut2-cre+/- mouse alleviated the neuropathic pain-induced mechanical hypersensitivity and reduced the increase in p-cofilin and GluR1 caused by SNI. Taken together, NL1 in excitatory neurons regulates neuropathic pain by promoting the SNI-dependent increase in p-cofilin and GluR1 in the spinal dorsal horn. Our study provides a better understanding of the role of NL1 in excitatory neurons, which might represent a possible therapeutic target for alleviating neuropathic pain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...