Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Genet (Hoboken) ; 3(4): 2200002, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36911291

RESUMEN

Liver metastasis is associated with immunotherapy resistance, although the underlying mechanisms remain incompletely understood. By applying single cell RNA-sequencing to a concurrent subcutaneous and liver tumor murine model to recapitulate liver metastases, it is identified that subsets within tumor-infiltrating exhausted CD8+ T (Tex) cells and immunosuppressive tumor-associated macrophages (TAMs) display opposite responses to concurrent liver tumors and anti-PD-1 treatment, suggesting a complex immune regulating network. Both angiogenic and interferon-reactive TAMs show increased frequencies in implanted liver tumors, and anti-PD-1 treatment further elevates the frequencies of angiogenic TAMs. Such TAMs frequencies negatively correlate with the proportions of cytotoxic T cell subsets. Further, expression of interferon-stimulated genes in TAMs is dramatically reduced under effective anti-PD-1 treatment, while such tendencies are diminished in mice with implanted liver tumors. Therefore, the study indicates that liver metastases could increase immunosuppressive TAMs frequencies and inhibit Tex responses to PD-1 blockade, resulting in compromised systemic antitumor immunity and limited immunotherapy efficacy.

2.
J Healthc Eng ; 2021: 8251702, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567488

RESUMEN

To explore the application effect of the big data medical imaging tertiary diagnostic system in improving the medical and health examination, cases in township health centers were collected by the medical imaging tertiary diagnosis system. Clinical cases examined by the tertiary diagnostic system of big data medical imaging will be set as the observation group. Clinical cases not involved in the tertiary diagnostic system of big data medical imaging were set as the control group. The qualified rate, film positive rate, and film diagnosis accuracy between the two groups are compared, and X-ray perspective, X-ray examination, and CT multiple medical imaging examinations are used in two groups. The experimental results showed that the pass rate was 86.57%, positive rate was 72.32%, and diagnosis rate was 80.17%. Pass rate, positive rate, and diagnostic accuracy were higher than the control group (P < 0.05). X-line film is the most cost effective. CT examination has a high diagnostic sensitivity and can achieve a clear diagnosis of the benign and malignant diseases. The three-level diagnosis system of medical imaging has significantly improved and improved the technical level in the medical and health examination, which has good practical value.


Asunto(s)
Macrodatos , Tomografía Computarizada por Rayos X , Humanos , Radiografía
3.
J Healthc Eng ; 2021: 4505227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336151

RESUMEN

Objective: This study uses PET imaging to observe the uptake and metabolism of 18F-fluorodeoxyglucose (18F-FDG) in the multibrain areas of the emotional control loop in patients with generalized anxiety disorder (GAD) and investigate the brain of GAD patient's functional abnormality mechanism. Methods: The thesis clinically collected 20 GAD patients and 20 healthy subjects. Dynamic PET-CT scans were used. At the same time, 18F-FDG whole-brain uptake and metabolism data were collected. Image fusion and semiquantitative analysis were used to measure emotional control loops. The maximum standard uptake value (SUVmax) and dynamic uptake and metabolic changes of 11 time points in the brain area at 150 min were measured. Results: Compared with the healthy control group, the peak uptake of the bilateral prefrontal cortex and the average uptake rate before the peak in GAD patients were significantly reduced (P < 0.05), and the average metabolic rate after the peak was significantly increased (P < 0.05). The peak uptake of the left striatum and the left hippocampus, the average uptake rate before the peak, and the average metabolic rate after the peak were all significantly reduced (P < 0.05); There were no obvious changes in the three indexes of the right striatum and the right hippocampus. Conclusion: There are 18F-FDG uptake and metabolic disorders in multiple brain areas of the affective control loop of GAD patients. The abnormal peak and rate of uptake may be related to the pathogenesis of GAD.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Trastornos de Ansiedad/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Humanos
4.
J Exp Med ; 218(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33900375

RESUMEN

Single-cell RNA sequencing is a powerful tool to examine cellular heterogeneity, novel markers and target genes, and therapeutic mechanisms in human cancers and animal models. Here, we analyzed single-cell RNA sequencing data of T cells obtained from multiple mouse tumor models by PCA-based subclustering coupled with TCR tracking using the STARTRAC algorithm. This approach revealed various differentiated T cell subsets and activation states, and a correspondence of T cell subsets between human and mouse tumors. STARTRAC analyses demonstrated peripheral T cell subsets that were developmentally connected with tumor-infiltrating CD8+ cells, CD4+ Th1 cells, and T reg cells. In addition, large amounts of paired TCRα/ß sequences enabled us to identify a specific enrichment of paired public TCR clones in tumor. Finally, we identified CCR8 as a tumor-associated T reg cell marker that could preferentially deplete tumor-associated T reg cells. We showed that CCR8-depleting antibody treatment provided therapeutic benefit in CT26 tumors and synergized with anti-PD-1 treatment in MC38 and B16F10 tumor models.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/inmunología , Células TH1/inmunología
5.
J Leukoc Biol ; 107(6): 917-932, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32272497

RESUMEN

T cells are crucial for the success of immune-based cancer therapy. Reinvigorating antitumor T cell activity by blocking checkpoint inhibitory receptors has provided clinical benefits for many cancer patients. However, the efficacy of these treatments varies in cancer patients and the mechanisms underlying these diverse responses remain elusive. The density and status of tumor-infiltrating T cells have been shown to positively correlate with patient response to checkpoint blockades. Therefore, further understanding of the heterogeneity, clonal expansion, migration, and effector functions of tumor-infiltrating T cells will provide fundamental insights into antitumor immune responses. To this end, recent advances in single-cell RNA sequencing technology have enabled profound and extensive characterization of intratumoral immune cells and have improved our understanding of their dynamic relationships. Here, we summarize recent progress in single-cell RNA sequencing technology and current strategies to uncover heterogeneous tumor-infiltrating T cell subsets. In particular, we discuss how the coupling of deep transcriptome information with T cell receptor (TCR)-based lineage tracing has furthered our understanding of intratumoral T cell populations. We also discuss the functional implications of various T cell subsets in tumors and highlight the identification of novel T cell markers with therapeutic or prognostic potential.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , ARN Neoplásico/genética , Subgrupos de Linfocitos T/inmunología , Transcriptoma , Comunicación Celular/genética , Comunicación Celular/inmunología , Expresión Génica , Heterogeneidad Genética , Humanos , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/patología , Neoplasias/genética , Neoplasias/patología , ARN Neoplásico/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Subgrupos de Linfocitos T/clasificación , Subgrupos de Linfocitos T/patología , Microambiente Tumoral/inmunología
6.
Cell ; 181(2): 442-459.e29, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302573

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for defining cellular diversity in tumors, but its application toward dissecting mechanisms underlying immune-modulating therapies is scarce. We performed scRNA-seq analyses on immune and stromal populations from colorectal cancer patients, identifying specific macrophage and conventional dendritic cell (cDC) subsets as key mediators of cellular cross-talk in the tumor microenvironment. Defining comparable myeloid populations in mouse tumors enabled characterization of their response to myeloid-targeted immunotherapy. Treatment with anti-CSF1R preferentially depleted macrophages with an inflammatory signature but spared macrophage populations that in mouse and human expresses pro-angiogenic/tumorigenic genes. Treatment with a CD40 agonist antibody preferentially activated a cDC population and increased Bhlhe40+ Th1-like cells and CD8+ memory T cells. Our comprehensive analysis of key myeloid subsets in human and mouse identifies critical cellular interactions regulating tumor immunity and defines mechanisms underlying myeloid-targeted immunotherapies currently undergoing clinical testing.


Asunto(s)
Neoplasias del Colon/patología , Células Mieloides/metabolismo , Análisis de la Célula Individual/métodos , Adulto , Anciano , Anciano de 80 o más Años , Animales , Secuencia de Bases/genética , Linfocitos T CD8-positivos/inmunología , China , Neoplasias del Colon/terapia , Neoplasias Colorrectales/patología , Células Dendríticas/inmunología , Femenino , Humanos , Inmunoterapia , Macrófagos/inmunología , Masculino , Ratones , Persona de Mediana Edad , Análisis de Secuencia de ARN/métodos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
7.
Immunity ; 52(1): 36-54, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31940272

RESUMEN

Therapeutics that target the T cell inhibitory checkpoint proteins CTLA-4 and PD(L)1 are efficacious across a broad range of cancers, resulting in reductions in tumor burden and increased long-term survival in subsets of patients. The significant and wide-ranging effects of these immunotherapies have prompted the clinical investigation of additional therapies that modulate anti-tumor immunity through effects on T cells, myeloid cells, and other cell types within the tumor microenvironment. The clinical activity of these newer investigational therapies has been mixed, with some therapeutics showing promise but others not exhibiting appreciable efficacy. In this review, we summarize the results of select recent clinical studies of cancer immunotherapies beyond anti-CTLA-4 and anti-PD(L)1 and discuss how these results are providing new insights into the regulation of human anti-tumor immunity.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia/métodos , Neoplasias/terapia , Linfocitos T/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno CTLA-4/antagonistas & inhibidores , Humanos , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Microambiente Tumoral/inmunología
8.
Nature ; 575(7781): 217-223, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666701

RESUMEN

KRAS is the most frequently mutated oncogene in cancer and encodes a key signalling protein in tumours1,2. The KRAS(G12C) mutant has a cysteine residue that has been exploited to design covalent inhibitors that have promising preclinical activity3-5. Here we optimized a series of inhibitors, using novel binding interactions to markedly enhance their potency and selectivity. Our efforts have led to the discovery of AMG 510, which is, to our knowledge, the first KRAS(G12C) inhibitor in clinical development. In preclinical analyses, treatment with AMG 510 led to the regression of KRASG12C tumours and improved the anti-tumour efficacy of chemotherapy and targeted agents. In immune-competent mice, treatment with AMG 510 resulted in a pro-inflammatory tumour microenvironment and produced durable cures alone as well as in combination with immune-checkpoint inhibitors. Cured mice rejected the growth of isogenic KRASG12D tumours, which suggests adaptive immunity against shared antigens. Furthermore, in clinical trials, AMG 510 demonstrated anti-tumour activity in the first dosing cohorts and represents a potentially transformative therapy for patients for whom effective treatments are lacking.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Piperazinas/farmacología , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Inmunoterapia , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Fosforilación/efectos de los fármacos , Piperazinas/administración & dosificación , Piperazinas/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/administración & dosificación , Piridinas/química , Pirimidinas/administración & dosificación , Pirimidinas/química , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
10.
J Immunol ; 203(4): 1076-1087, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31253728

RESUMEN

Elicitation of tumor cell killing by CD8+ T cells is an effective therapeutic approach for cancer. In addition to using immune checkpoint blockade to reinvigorate existing but unresponsive tumor-specific T cells, alternative therapeutic approaches have been developed, including stimulation of polyclonal T cell cytolytic activity against tumors using bispecific T cell engager (BiTE) molecules that simultaneously engage the TCR complex and a tumor-associated Ag. BiTE molecules are efficacious against hematologic tumors and are currently being explored as an immunotherapy for solid tumors. To understand mechanisms regulating BiTE molecule--mediated CD8+ T cell activity against solid tumors, we sought to define human CD8+ T cell populations that efficiently respond to BiTE molecule stimulation and identify factors regulating their cytolytic activity. We find that human CD45RA+CCR7- CD8+ T cells are highly responsive to BiTE molecule stimulation, are enriched in genes associated with cytolytic effector function, and express multiple unique inhibitory receptors, including leukocyte Ig-like receptor B1 (LILRB1). LILRB1 and programmed cell death protein 1 (PD1) were found to be expressed by distinct CD8+ T cell populations, suggesting different roles in regulating the antitumor response. Engaging LILRB1 with its ligand HLA-G on tumor cells significantly inhibited BiTE molecule-induced CD8+ T cell activation. Blockades of LILRB1 and PD1 induced greater CD8+ T cell activation than either treatment alone. Together, our data suggest that LILRB1 functions as a negative regulator of human CD8+ effector T cells and that blocking LILRB1 represents a unique strategy to enhance BiTE molecule therapeutic activity against solid tumors.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Antígenos CD/inmunología , Inmunoterapia/métodos , Receptor Leucocitario Tipo Inmunoglobulina B1/inmunología , Neoplasias/inmunología , Linfocitos T Citotóxicos/inmunología , Anticuerpos Biespecíficos/inmunología , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Subgrupos de Linfocitos T/inmunología , Células Tumorales Cultivadas
11.
Immunity ; 50(4): 871-891, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995504

RESUMEN

Cytokines are among the most important effector and messenger molecules in the immune system. They profoundly participate in immune responses during infection and inflammation, protecting against or contributing to diseases such as allergy, autoimmunity, and cancer. Manipulating cytokine pathways, therefore, is one of the most effective strategies to treat various diseases. IL-10 family cytokines exert essential functions to maintain tissue homeostasis during infection and inflammation through restriction of excessive inflammatory responses, upregulation of innate immunity, and promotion of tissue repairing mechanisms. Their important functions in diseases are supported by data from many preclinical models, human genetic studies, and clinical interventions. Despite significant efforts, however, there is still no clinically approved therapy through manipulating IL-10 family cytokines. Here, we summarize the recent progress in understanding the biology of this family of cytokines, suggesting more specific strategies to maneuver these cytokines for the effective treatment of inflammatory diseases and cancers.


Asunto(s)
Inmunidad Innata , Interleucina-10/inmunología , Interleucinas/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Citocinas/clasificación , Citocinas/genética , Regulación de la Expresión Génica , Humanos , Infecciones/inmunología , Infecciones/terapia , Inflamación/inmunología , Inflamación/terapia , Interleucina-10/genética , Interleucinas/genética , Subgrupos Linfocitarios/inmunología , Ratones , Familia de Multigenes , Células Mieloides/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Transducción de Señal , Factores de Transcripción/fisiología , Interleucina-22
12.
J Pharmacol Exp Ther ; 369(3): 406-418, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30940693

RESUMEN

The ability of rodent immune-mediated arthritis models to quantitatively predict therapeutic activity of antiarthritis agents is poorly understood. Two commonly used preclinical models of arthritis are adjuvant-induced arthritis (AIA) and collagen-induced arthritis (CIA) in rats. The objective of the current study is to investigate the relationship between efficacy in AIA and CIA in rats, and clinical efficacy in rheumatoid arthritis patients using translational pharmacokinetic-pharmacodynamic (PK-PD) analysis. A range of doses of indomethacin (a nonsteroidal anti-inflammatory drug), and three disease-modifying antirheumatic drugs (DMARDs), methotrexate, etanercept, and tofacitinib, were evaluated in AIA and CIA rats. Dexamethasone was included in this study as a positive control. The area under the ankle diameter-time profile (AUCankle) and ankle histopathology summed scores (AHSS) were used as efficacy endpoints for activity against disease symptoms (joint inflammation) and disease progression (joint damage), respectively. Translational PK-PD analysis was performed to rank order preclinical efficacy endpoints at clinically relevant concentrations. For each drug tested, inhibition of AUCankle and AHSS scores was generally comparable in both magnitude and rank order. Overall, based on both AUCankle and the AHSS inhibition, the rank ordering of preclinical activity for the DMARDs evaluated was tofacitinib > etanercept ≥ methotrexate. This ranking of preclinical efficacy was consistent with reported clinical efficacy. Of interest, indomethacin showed equal or often better efficacy than the three DMARDs evaluated on inhibiting AHSS despite having limited ability to prevent joint damage clinically in patients. The translational value of performing PK-PD analysis of arthritis models in rats is discussed.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/farmacocinética , Antirreumáticos/farmacología , Antirreumáticos/farmacocinética , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Investigación Biomédica Traslacional , Animales , Tobillo/patología , Antiinflamatorios no Esteroideos/uso terapéutico , Antirreumáticos/uso terapéutico , Artritis Experimental/patología , Relación Dosis-Respuesta a Droga , Masculino , Ratas
13.
J Immunol ; 202(7): 1935-1941, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770417

RESUMEN

IL-17 family cytokines are critical to host defense responses at cutaneous and mucosal surfaces. Whereas IL-17A, IL-17F, and IL-17C induce overlapping inflammatory cascades to promote neutrophil-mediated immunity, IL-17E/IL-25 drives type 2 immune pathways and eosinophil activity. Genetic and pharmacological studies reveal the significant contribution these cytokines play in antimicrobial and autoimmune mechanisms. However, little is known about the related family member, IL-17B, with contrasting reports of both pro- and anti-inflammatory function in rodents. We demonstrate that in the human immune system, IL-17B is functionally similar to IL-25 and elicits type 2 cytokine secretion from innate type 2 lymphocytes, NKT, and CD4+ CRTH2+ Th2 cells. Like IL-25, this activity is dependent on the IL-17RA and IL-17RB receptor subunits. Furthermore, IL-17B can augment IL-33-driven type 2 responses. These data position IL-17B as a novel component in the regulation of human type 2 immunity.


Asunto(s)
Inmunidad Innata/inmunología , Interleucina-17/inmunología , Receptores de Interleucina-17/inmunología , Subgrupos de Linfocitos T/inmunología , Humanos , Inflamación/inmunología
14.
J Chem Phys ; 150(4): 041711, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709317

RESUMEN

Within a generalized Anderson-Holstein model, we investigate electron transfer rates using two different surface hopping algorithms: a broadened classical master equation (BCME) and independent electron surface hopping (IESH). We find that for large enough bandwidth and density of one electron states, and in the presence of external friction, the IESH results converge to the BCME results for impurity-bath model systems, recovering both relaxation rates and equilibrium populations. Without external friction, however, the BCME and IESH results can strongly disagree, and preliminary evidence suggests that IESH does not always recover the correct equilibrium state. Finally, we also demonstrate that adding an electronic thermostat to IESH does help drive the metallic substrate to the correct equilibrium state, but this improvement can sometimes come at the cost of worse short time dynamics. Overall, our results should be of use for all computational chemists looking to model either gas phase scattering or electrochemical dynamics at a metal interface.

15.
Artículo en Inglés | MEDLINE | ID: mdl-29038121

RESUMEN

Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Enfermedades Autoinmunes/inmunología , Citocinas/genética , Citocinas/uso terapéutico , Humanos , Inflamación/inmunología , Interleucina-10/química , Interleucina-10/fisiología , Interleucina-10/uso terapéutico , Neoplasias/inmunología
16.
Pharmacol Res Perspect ; 6(6): e00434, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30464842

RESUMEN

Although Interleukin-22 (IL-22) is produced by various leukocytes, it preferentially targets cells with epithelial origins. IL-22 exerts essential roles in modulating various tissue epithelial functions, such as innate host defense against extracellular pathogens, barrier integrity, regeneration, and wound healing. Therefore, IL-22 is thought to have therapeutic potential in treating diseases associated with infection, tissue injury or chronic tissue damage. A number of in vitro and in vivo nonclinical studies were conducted to characterize the pharmacological activity and safety parameters of UTTR1147A, an IL-22 recombinant fusion protein that links the human cytokine IL-22 with the Fc portion of a human immunoglobulin. To assess the pharmacological activity of UTTR1147A, STAT3 activation was evaluated in primary hepatocytes isolated from human, cynomolgus monkey, minipig, rat, and mouse after incubation with UTTR1147A. UTTR1147A activated STAT3 in all species evaluated, demonstrating that all were appropriate nonclinical species for toxicology studies. The nonclinical safety profile of UTTR1147A was evaluated in rats, minipigs, and cynomolgus monkeys to establish a safe clinical starting dose for humans in Phase I trials and to support clinical intravenous, subcutaneous and/or topical administration treatment regimen. Results demonstrate the cross-species translatability of the biological response in activating the IL-22 pathway as well as the translatability of findings from in vitro to in vivo systems. UTTR1147A was well tolerated in all species tested and induced the expected pharmacologic effects of epidermal hyperplasia and a transient increase in on-target acute phase proteins. These effects were all considered to be clinically predictable, manageable, monitorable, and reversible.


Asunto(s)
Hepatocitos/efectos de los fármacos , Factores Inmunológicos/farmacología , Interleucinas/toxicidad , Proteínas Recombinantes de Fusión/toxicidad , Animales , Ensayos Clínicos Fase I como Asunto , Evaluación Preclínica de Medicamentos , Femenino , Hepatocitos/metabolismo , Humanos , Interleucinas/administración & dosificación , Macaca fascicularis , Masculino , Ratones , Cultivo Primario de Células , Ratas , Proteínas Recombinantes de Fusión/administración & dosificación , Factor de Transcripción STAT3/metabolismo , Porcinos , Porcinos Enanos , Interleucina-22
17.
Nature ; 564(7735): 268-272, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30479382

RESUMEN

T cells are key elements of cancer immunotherapy1 but certain fundamental properties, such as the development and migration of T cells within tumours, remain unknown. The enormous T cell receptor (TCR) repertoire, which is required for the recognition of foreign and self-antigens2, could serve as lineage tags to track these T cells in tumours3. Here we obtained transcriptomes of 11,138 single T cells from 12 patients with colorectal cancer, and developed single T cell analysis by RNA sequencing and TCR tracking (STARTRAC) indices to quantitatively analyse the dynamic relationships among 20 identified T cell subsets with distinct functions and clonalities. Although both CD8+ effector and 'exhausted' T cells exhibited high clonal expansion, they were independently connected with tumour-resident CD8+ effector memory cells, implicating a TCR-based fate decision. Of the CD4+ T cells, most tumour-infiltrating T regulatory (Treg) cells showed clonal exclusivity, whereas certain Treg cell clones were developmentally linked to several T helper (TH) cell clones. Notably, we identified two IFNG+ TH1-like cell clusters in tumours that were associated with distinct IFNγ-regulating transcription factors -the GZMK+ effector memory T cells, which were associated with EOMES and RUNX3, and CXCL13+BHLHE40+ TH1-like cell clusters, which were associated with BHLHE40. Only CXCL13+BHLHE40+ TH1-like cells were preferentially enriched in patients with microsatellite-instable tumours, and this might explain their favourable responses to immune-checkpoint blockade. Furthermore, IGFLR1 was highly expressed in both CXCL13+BHLHE40+ TH1-like cells and CD8+ exhausted T cells and possessed co-stimulatory functions. Our integrated STARTRAC analyses provide a powerful approach to dissect the T cell properties in colorectal cancer comprehensively, and could provide insights into the dynamic relationships of T cells in other cancers.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Linfocitos T CD8-positivos/citología , Linaje de la Célula , Movimiento Celular , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas Adaptadoras Transductoras de Señales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proteínas Portadoras/metabolismo , Rastreo Celular , Células Cultivadas , Células Clonales/citología , Células Clonales/inmunología , Humanos , Células TH1/citología , Células TH1/inmunología
18.
J Exp Med ; 215(7): 1775-1776, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29945999

RESUMEN

The precise downstream mediators of TGF-ß signaling in Th17 and T reg cells remain unclear. In this issue of JEM, Tanaka et al. report that Trim33 transduces TGF-ß signals in Th17 cells to generate an optimal proinflammatory cytokine profile.


Asunto(s)
Células Th17 , Factor de Crecimiento Transformador beta , Interleucina-17 , Linfocitos T Reguladores
19.
Biochem Pharmacol ; 152: 224-235, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29608910

RESUMEN

Interleukin (IL)-22 plays protective roles in infections and in inflammatory diseases that have been linked to its meditation of innate immunity via multiple mechanisms. IL-22 binds specifically to its heterodimeric receptor, which is expressed on a variety of epithelial tissues. UTTR1147A is a recombinant fusion protein that links the human cytokine IL-22 with the Fc portion of human immunoglobulin (Ig) G4. Here, we report extensive in vitro and in vivo nonclinical studies that were conducted to characterize the pharmacological activity of UTTR1147A. The in vitro activity and potency of UTTR1147A were analyzed using primary human hepatocytes and human colonic epithelial cell lines. Assessment of in vivo efficacy was performed in a mouse colitis model and by measuring relevant pharmacodynamic biomarkers, including antimicrobial peptides REG3A/ß, serum amyloid protein A (SAA) and lipopolysaccharide binding protein (LBP). The pharmacokinetic and pharmacodynamic characteristics of UTTR1147A were assessed in healthy mice, rats and cynomolgus monkeys. UTTR1147A induced STAT3 activation through binding to IL-22 receptor expressed in primary human hepatocytes and human colon cell lines. In both, activation occurred in a concentration-dependent manner with similar potencies. In the mouse colitis model, murine IL-22Fc- (muIL-22Fc) treated groups at doses of 1.25 µg and above had statistically lower average histologic colitis scores compared to the control treated group. Administration of muIL-22Fc or UTTR1147A was associated with a dose-dependent induction of PD markers REG3ß and SAA in rodents as well as REG3A, SAA and LBP in cynomolgus monkeys. The combined data confirm pharmacological activity of IL-22Fc and support potential regenerative and protective mechanisms in epithelial tissues.


Asunto(s)
Inmunoglobulina G/metabolismo , Interleucinas/metabolismo , Animales , Área Bajo la Curva , Línea Celular , Colitis/inducido químicamente , Colitis/terapia , Citocinas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes , Interleucina-22
20.
Immunohorizons ; 2(5): 164-171, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31022698

RESUMEN

Intestinal epithelial cells form a physical barrier that is tightly regulated to control intestinal permeability. Proinflammatory cytokines, such as TNF-α, increase epithelial permeability through disruption of epithelial junctions. The regulation of the epithelial barrier in inflammatory gastrointestinal disease remains to be fully characterized. In this article, we show that the human inflammatory bowel disease genetic susceptibility gene C1ORF106 plays a key role in regulating gut epithelial permeability. C1ORF106 directly interacts with cytohesins to maintain functional epithelial cell junctions. C1orf106-deficient mice are hypersensitive to TNF-α-induced increase in epithelial permeability, and this is associated with increased diarrhea. This study identifies C1ORF106 as an epithelial cell junction protein, and the loss of C1ORF106 augments TNF-α-induced intestinal epithelial leakage and diarrhea that may play a critical role in the development of inflammatory bowel disease.


Asunto(s)
Proteínas Portadoras/genética , Enfermedades Inflamatorias del Intestino/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Animales , Células CACO-2 , Proteínas Portadoras/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Epiteliales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Permeabilidad , Receptores Citoplasmáticos y Nucleares/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...