Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Sci Total Environ ; 931: 172855, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38692324

RESUMEN

Understanding how human actions and environmental change affect water resources is crucial for addressing complex water management issues. The scientific tools that can produce the necessary information are ecological indicators, referring to measurable properties of the ecosystem state; environmental monitoring, the data collection process that is required to evaluate the progress towards reaching water management goals; mathematical models, linking human disturbances with the ecosystem state to predict environmental impacts; and scenarios, assisting in long-term management and policy implementation. Paradoxically, despite the rapid generation of data, evolving scientific understanding, and recent advancements in systems modeling, there is a striking imbalance between knowledge production and knowledge utilization in decision-making. In this paper, we examine the role and potential capacity of scientific tools in guiding governmental decision-making processes and identify the most critical disparities between water management, policy, law, and science. We demonstrate how the complex, uncertain, and gradually evolving nature of scientific knowledge might not always fit aptly to the legislative and policy processes and structures. We contend that the solution towards increased understanding of socio-ecological systems and reduced uncertainty lies in strengthening the connections between water management theory and practice, among the scientific tools themselves, among different stakeholders, and among the social, economic, and ecological facets of water quality management, law, and policy. We conclude by tying in three knowledge-exchange strategies, namely - adaptive management, Driver-Pressure-Status-Impact-Response (DPSIR) framework, and participatory modeling - that offer complementary perspectives to bridge the gap between science and policy.


Asunto(s)
Política Ambiental , Incertidumbre , Monitoreo del Ambiente , Conservación de los Recursos Hídricos/métodos , Conservación de los Recursos Hídricos/legislación & jurisprudencia , Toma de Decisiones , Calidad del Agua , Ecosistema , Abastecimiento de Agua/legislación & jurisprudencia
2.
Mol Ecol ; 33(12): e17376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703052

RESUMEN

Unravelling how species communities change along environmental gradients requires a dual understanding: the direct responses of the species to their abiotic surroundings and the indirect variation of these responses through biotic interactions. Here, we focus on the interactive relationships between plants and their symbiotic root-associated fungi (RAF) along stressful abiotic gradients. We investigate whether variations in RAF community composition along altitudinal gradients influence plant growth at high altitudes, where both plants and fungi face harsher abiotic conditions. We established a translocation experiment between pairs of Bistorta vivipara populations across altitudinal gradients. To separate the impact of shifting fungal communities from the overall influence of changing abiotic conditions, we used a root barrier to prevent new colonization by RAF following translocation. To characterize the RAF communities, we applied DNA barcoding to the root samples. Through the utilization of joint species distribution modelling, we assessed the relationship between changes in plant functional traits resulting from experimental treatments and the corresponding changes in the RAF communities. Our findings indicate that RAF communities influence plant responses to stressful abiotic conditions. Plants translocated from low to high altitudes grew more when they were able to associate with the resident high-altitude RAF compared to those plants that were not allowed to associate with the resident RAF. We conclude that interactions with RAF impact how plants respond to stressful abiotic conditions. Our results provide experimental support that interactions with RAF improve plant stress tolerance to altitudinal stressors such as colder temperatures and less nutrient availability.


Asunto(s)
Altitud , Raíces de Plantas , Simbiosis , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Simbiosis/genética , Hongos/genética , Desarrollo de la Planta/genética , Código de Barras del ADN Taxonómico , Micorrizas/genética , Micorrizas/fisiología
3.
Proc Natl Acad Sci U S A ; 121(20): e2303846121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709920

RESUMEN

Habitat loss and isolation caused by landscape fragmentation represent a growing threat to global biodiversity. Existing theory suggests that the process will lead to a decline in metapopulation viability. However, since most metapopulation models are restricted to simple networks of discrete habitat patches, the effects of real landscape fragmentation, particularly in stochastic environments, are not well understood. To close this major gap in ecological theory, we developed a spatially explicit, individual-based model applicable to realistic landscape structures, bridging metapopulation ecology and landscape ecology. This model reproduced classical metapopulation dynamics under conventional model assumptions, but on fragmented landscapes, it uncovered general dynamics that are in stark contradiction to the prevailing views in the ecological and conservation literature. Notably, fragmentation can give rise to a series of dualities: a) positive and negative responses to environmental noise, b) relative slowdown and acceleration in density decline, and c) synchronization and desynchronization of local population dynamics. Furthermore, counter to common intuition, species that interact locally ("residents") were often more resilient to fragmentation than long-ranging "migrants." This set of findings signals a need to fundamentally reconsider our approach to ecosystem management in a noisy and fragmented world.


Asunto(s)
Biodiversidad , Ecosistema , Dinámica Poblacional , Conservación de los Recursos Naturales , Modelos Biológicos , Animales , Modelos Teóricos
4.
Sci Data ; 11(1): 561, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816458

RESUMEN

Novel methods for sampling and characterizing biodiversity hold great promise for re-evaluating patterns of life across the planet. The sampling of airborne spores with a cyclone sampler, and the sequencing of their DNA, have been suggested as an efficient and well-calibrated tool for surveying fungal diversity across various environments. Here we present data originating from the Global Spore Sampling Project, comprising 2,768 samples collected during two years at 47 outdoor locations across the world. Each sample represents fungal DNA extracted from 24 m3 of air. We applied a conservative bioinformatics pipeline that filtered out sequences that did not show strong evidence of representing a fungal species. The pipeline yielded 27,954 species-level operational taxonomic units (OTUs). Each OTU is accompanied by a probabilistic taxonomic classification, validated through comparison with expert evaluations. To examine the potential of the data for ecological analyses, we partitioned the variation in species distributions into spatial and seasonal components, showing a strong effect of the annual mean temperature on community composition.


Asunto(s)
Microbiología del Aire , ADN de Hongos , Esporas Fúngicas , ADN de Hongos/análisis , Hongos/genética , Hongos/clasificación , Biodiversidad
5.
Trends Ecol Evol ; 39(4): 368-380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37949794

RESUMEN

Advances in statistics mean that it is now possible to tackle increasingly sophisticated observation processes. The intricacies and ambitious scale of modern data collection techniques mean that this is now essential. Methodological research to make inference about the biological process while accounting for the observation process has expanded dramatically, but solutions are often presented in field-specific terms, limiting our ability to identify commonalities between methods. We suggest a typology of observation processes that could improve translation between fields and aid methodological synthesis. We propose the LIES framework (defining observation processes in terms of issues of Latency, Identifiability, Effort and Scale) and illustrate its use with both simple examples and more complex case studies.


Asunto(s)
Ecología , Proyectos de Investigación
6.
Trends Ecol Evol ; 39(3): 280-293, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37949795

RESUMEN

New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning.


Asunto(s)
Biodiversidad , Ecosistema , ADN , Políticas
7.
Trends Ecol Evol ; 39(4): 328-337, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38030538

RESUMEN

Ecological and evolutionary studies are currently failing to achieve complete and consistent reporting of model-related uncertainty. We identify three key barriers - a focus on parameter-related uncertainty, obscure uncertainty metrics, and limited recognition of uncertainty propagation - which have led to gaps in uncertainty consideration. However, these gaps can be closed. We propose that uncertainty reporting in ecology and evolution can be improved through wider application of existing statistical solutions and by adopting good practice from other scientific fields. Our recommendations include greater consideration of input data and model structure uncertainties, field-specific uncertainty standards for methods and reporting, and increased uncertainty propagation through the use of hierarchical models.


Asunto(s)
Ecología , Incertidumbre , Ecología/métodos
8.
Ecol Evol ; 13(12): e10784, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38111919

RESUMEN

When comparing multiple models of species distribution, models yielding higher predictive performance are clearly to be favored. A more difficult question is how to decide whether even the best model is "good enough". Here, we clarify key choices and metrics related to evaluating the predictive performance of presence-absence models. We use a hierarchical case study to evaluate how four metrics of predictive performance (AUC, Tjur's R 2, max-Kappa, and max-TSS) relate to each other, the random and fixed effects parts of the model, the spatial scale at which predictive performance is measured, and the cross-validation strategy chosen. We demonstrate that the very same metric can achieve different values for the very same model, even when similar cross-validation strategies are followed, depending on the spatial scale at which predictive performance is measured. Among metrics, Tjur's R 2 and max-Kappa generally increase with species' prevalence, whereas AUC and max-TSS are largely independent of prevalence. Thus, Tjur's R 2 and max-Kappa often reach lower values when measured at the smallest scales considered in the study, while AUC and max-TSS reaching similar values across the different spatial levels included in the study. However, they provide complementary insights on predictive performance. The very same model may appear excellent or poor not only due to the applied metric, but also how predictive performance is exactly calculated, calling for great caution on the interpretation of predictive performance. The most comprehensive evaluation of predictive performance can be obtained by evaluating predictive performance through the combination of measures providing complementary insights. Instead of following simple rules of thumb or focusing on absolute values, we recommend comparing the achieved predictive performance to the researcher's own a priori expectations on how easy it is to make predictions related to the same question that the model is used for.

9.
Ecol Evol ; 13(10): e10588, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869428

RESUMEN

Functional trait approaches are common in ecology, but a lack of clear hypotheses on how traits relate to environmental gradients (i.e., trait-niche relationships) often makes uncovering mechanisms difficult. Furthermore, measures of community functional structure differ in their implications, yet inferences are seldom compared among metrics. Community-weighted mean trait values (CWMs), a common measure, are largely driven by the most common species and thus do not reflect community-wide trait-niche relationships per se. Alternatively, trait-niche relationships can be estimated across a larger group of species using hierarchical joint species distribution models (JSDMs), quantified by a parameter Γ. We investigated how inferences about trait-niche relationships are affected by the choice of metric. Using deadwood-dependent (saproxylic) beetles in fragmented Finnish forests, we followed a protocol for investigating trait-niche relationships by (1) identifying environmental filters (climate, forest age, and deadwood volume), (2) relating these to an ecological function (dispersal ability), and (3) identifying traits related to this function (wing morphology). We tested 18 hypothesized dispersal relationships using both CWM and Γ estimates across these environmental gradients. CWMs were more likely than Γ to show support for trait-niche relationships. Up to 13% of species' realized niches were explained by dispersal traits, but the directions of effects were consistent with fewer than 11%-39% of our 18 trait-niche hypotheses (depending on the metric used). This highlights the difficulty in connecting morphological traits and ecological functions in insects, despite the clear conceptual link between landscape connectivity and flight-related traits. Caution is thus warranted in hypothesis development, particularly where apparent trait-function links are less clear. Inferences differ when CWMs versus Γ estimates are used, necessitating the choice of a metric that reflects study questions. CWMs help explain the effects of environmental gradients on community trait composition, whereas the effects of traits on species' niches are better estimated using hierarchical JSDMs.

10.
Ecol Evol ; 13(10): e10580, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37818248

RESUMEN

The Eltonian niche of a species is defined as its set of interactions with other taxa. How this set varies with biotic, abiotic and human influences is a core question of modern ecology. In seasonal environments, the realized Eltonian niche is likely to vary due to periodic changes in the occurrence and abundance of interaction partners and changes in species behavior and preferences. Also, human management decisions may leave strong imprints on species interactions. To compare the impact of seasonality to that of management effects, honeybees provide an excellent model system. Based on DNA traces of interaction partners archived in honey, we can infer honeybee interactions with floral resources and microbes in the surrounding habitats, their hives, and themselves. Here, we resolved seasonal and management-based impacts on honeybee interactions by sampling beehives repeatedly during the honey-storing period of honeybees in Finland. We then use a genome-skimming approach to identify the taxonomic contents of the DNA in the samples. To compare the effects of the season to the effects of location, management, and the colony itself in shaping honeybee interactions, we used joint species distribution modeling. We found that honeybee interactions with other taxa varied greatly among taxonomic and functional groups. Against a backdrop of wide variation in the interactions documented in the DNA content of honey from bees from different hives, regions, and beekeepers, the imprint of the season remained relatively small. Overall, a honey-based approach offers unique insights into seasonal variation in the identity and abundance of interaction partners among honeybees. During the summer, the availability and use of different interaction partners changed substantially, but hive- and taxon-specific patterns were largely idiosyncratic as modified by hive management. Thus, the beekeeper and colony identity are as important determinants of the honeybee's realized Eltonian niche as is seasonality.

11.
Nat Commun ; 14(1): 5426, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704608

RESUMEN

Protected areas are considered fundamental to counter biodiversity loss. However, evidence for their effectiveness in averting local extinctions remains scarce and taxonomically biased. We employ a robust counterfactual multi-taxon approach to compare occupancy patterns of 638 species, including birds (150), mammals (23), plants (39) and phytoplankton (426) between protected and unprotected sites across four decades in Finland. We find mixed impacts of protected areas, with only a small proportion of species explicitly benefiting from protection-mainly through slower rates of decline inside protected areas. The benefits of protection are enhanced for larger protected areas and are traceable to when the sites were protected, but are mostly unrelated to species conservation status or traits (size, climatic niche and threat status). Our results suggest that the current protected area network can partly contribute to slow down declines in occupancy rates, but alone will not suffice to halt the biodiversity crisis. Efforts aimed at improving coverage, connectivity and management will be key to enhance the effectiveness of protected areas towards bending the curve of biodiversity loss.


Asunto(s)
Biodiversidad , Agua Dulce , Animales , Finlandia , Fenotipo , Fitoplancton , Mamíferos
12.
ISME Commun ; 3(1): 65, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365224

RESUMEN

With anticipated expansion of agricultural areas for food production and increasing intensity of pressures stemming from land-use, it is critical to better understand how species respond to land-use change. This is particularly true for microbial communities which provide key ecosystem functions and display fastest responses to environmental change. However, regional land-use effects on local environmental conditions are often neglected, and, hence, underestimated when investigating community responses. Here we show that the effects stemming from agricultural and forested land use are strongest reflected in water conductivity, pH and phosphorus concentration, shaping microbial communities and their assembly processes. Using a joint species distribution modelling framework with community data based on metabarcoding, we quantify the contribution of land-use types in determining local environmental variables and uncover the impact of both, land-use, and local environment, on microbial stream communities. We found that community assembly is closely linked to land-use type but that the local environment strongly mediates the effects of land-use, resulting in systematic variation of taxon responses to environmental conditions, depending on their domain (bacteria vs. eukaryote) and trophic mode (autotrophy vs. heterotrophy). Given that regional land-use type strongly shapes local environments, it is paramount to consider its key role in shaping local stream communities.

13.
Trends Ecol Evol ; 38(10): 916-926, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37208222

RESUMEN

Digital twins (DTs) are an emerging phenomenon in the public and private sectors as a new tool to monitor and understand systems and processes. DTs have the potential to change the status quo in ecology as part of its digital transformation. However, it is important to avoid misguided developments by managing expectations about DTs. We stress that DTs are not just big models of everything, containing big data and machine learning. Rather, the strength of DTs is in combining data, models, and domain knowledge, and their continuous alignment with the real world. We suggest that researchers and stakeholders exercise caution in DT development, keeping in mind that many of the strengths and challenges of computational modelling in ecology also apply to DTs.


Asunto(s)
Simulación por Computador , Ecología , Macrodatos , Aprendizaje Automático
14.
Funct Ecol ; 37(1): 150-161, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37064507

RESUMEN

Climate, topography and the 3D structure of forests are major drivers affecting local species communities. However, little is known about how the specific functional traits of saproxylic (wood-living) beetles, involved in the recycling of wood, might be affected by those environmental characteristics.Here, we combine ecological and morphological traits available for saproxylic beetles and airborne laser scanning (ALS) data in Bayesian trait-based joint species distribution models to study how traits drive the distributions of more than 230 species in temperate forests of Europe.We found that elevation (as a proxy for temperature and precipitation) and the proportion of conifers played important roles in species occurrences while variables related to habitat heterogeneity and forest complexity were less relevant. Furthermore, we showed that local communities were shaped by environmental variation primarily through their ecological traits whereas morphological traits were involved only marginally. As predicted, ecological traits influenced species' responses to forest structure, and to other environmental variation, with canopy niche, wood decay niche and host preference as the most important ecological traits. Conversely, no links between morphological traits and environmental characteristics were observed. Both models, however, revealed strong phylogenetic signal in species' response to environmental characteristics.These findings imply that alterations of climate and tree species composition have the potential to alter saproxylic beetle communities in temperate forests. Additionally, ecological traits help explain species' responses to environmental characteristics and thus should prove useful in predicting their responses to future change. It remains challenging, however, to link simple morphological traits to species' complex ecological niches. Read the free Plain Language Summary for this article on the Journal blog.

15.
J Math Biol ; 86(5): 68, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017776

RESUMEN

Theoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs' applicability in cancer research.


Asunto(s)
Ecología , Neoplasias , Humanos , Dinámica Poblacional , Crecimiento Demográfico , Modelos Biológicos
16.
Glob Ecol Biogeogr ; 32(2): 295-309, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37081858

RESUMEN

Aim: We use lake phytoplankton community data to quantify the spatio-temporal and scale-dependent impacts of eutrophication, land-use and climate change on species niches and community assembly processes while accounting for species traits and phylogenetic constraints. Location: Finland. Time period: 1977-2017. Major taxa: Phytoplankton. Methods: We use hierarchical modelling of species communities (HMSC) to model metacommunity trajectories at 853 lakes over four decades of environmental change, including a hierarchical spatial structure to account for scale-dependent processes. Using a "region of common profile" approach, we evaluate compositional changes of species communities and trait profiles and investigate their temporal development. Results: We demonstrate the emergence of novel and widespread community composition clusters in previously more compositionally homogeneous communities, with cluster-specific community trait profiles, indicating functional differences. A strong phylogenetic signal of species responses to the environment implies similar responses among closely related taxa. Community cluster-specific species prevalence indicates lower taxonomic dispersion within the current dominant clusters compared with the historically dominant cluster and an overall higher prevalence of smaller species sizes within communities. Our findings denote profound spatio-temporal structuring of species co-occurrence patterns and highlight functional differences of lake phytoplankton communities. Main conclusions: Diverging community trajectories have led to a nationwide reshuffling of lake phytoplankton communities. At regional and national scales, lakes are not single entities but metacommunity hubs in an interconnected waterscape. The assembly mechanisms of phytoplankton communities are strongly structured by spatio-temporal dynamics, which have led to novel community types, but only a minor part of this reshuffling could be linked to temporal environmental change.

17.
J Am Stat Assoc ; 118(544): 2521-2532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38501061

RESUMEN

We aim at modeling the appearance of distinct tags in a sequence of labeled objects. Common examples of this type of data include words in a corpus or distinct species in a sample. These sequential discoveries are often summarized via accumulation curves, which count the number of distinct entities observed in an increasingly large set of objects. We propose a novel Bayesian method for species sampling modeling by directly specifying the probability of a new discovery, therefore, allowing for flexible specifications. The asymptotic behavior and finite sample properties of such an approach are extensively studied. Interestingly, our enlarged class of sequential processes includes highly tractable special cases. We present a subclass of models characterized by appealing theoretical and computational properties, including one that shares the same discovery probability with the Dirichlet process. Moreover, due to strong connections with logistic regression models, the latter subclass can naturally account for covariates. We finally test our proposal on both synthetic and real data, with special emphasis on a large fungal biodiversity study in Finland. Supplementary materials for this article are available online.

18.
Ann Appl Stat ; 16(3): 1380-1399, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36465815

RESUMEN

We introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence. This rules out Poisson process based models where the rate function itself is not long range dependent. The proposed class of FRActional Probit (FRAP) models is based on thresholding, a latent process. This latent process is modeled by a smooth Gaussian process and a fractional Brownian motion by assuming an additive structure. We develop a Bayesian approach to inference using Markov chain Monte Carlo and show good performance in simulation studies. Applying the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data in which there are many different species of birds exhibiting their own vocalization dynamics, a hierarchical expansion of FRAP is provided in the Supplementary Material.

19.
Proc Biol Sci ; 289(1986): 20220843, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36321491

RESUMEN

Social information, acquired through the observation of other individuals, is especially relevant among species belonging to the same guild. The unpredictable and ephemeral nature of carrion implies that social mechanisms may be selected among scavenger species to facilitate carcass location and consumption. Here, we apply a survival-modelling strategy to data obtained through the placement and monitoring of carcasses in the field to analyse possible information transmission cascades within a Neotropical scavenger community. Our study highlights how the use of different senses (smell and sight) within this guild facilitates carcass location through the transmission of social information between species with different carrion foraging efficiencies. Vultures with a highly developed sense of smell play a key role in this process, as they are the first to arrive at the carcasses and their presence seems to serve as a visual cue for other species to locate the resource. Our study supports the local enhancement hypothesis within scavengers, whereby individuals locate carcasses by following foraging heterospecifics, also suggesting the importance of the sense of smell in the maintenance of the community structure.


Asunto(s)
Falconiformes , Olfato , Humanos , Animales , Ecosistema , Conducta Alimentaria , Cadena Alimentaria , Cadáver
20.
J Evol Biol ; 35(11): 1432-1441, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36177776

RESUMEN

Natural selection on floral scent composition is a key element of the hypothesis that pollinators and other floral visitors drive scent evolution. The measure of such selection is complicated by the high-dimensional nature of floral scent data and uncertainty about the cognitive processes involved in scent-mediated communication. We use dimension reduction through reduced-rank regression to jointly estimate a scent composite trait under selection and the strength of selection acting on this trait. To assess and compare variation in selection on scent across species, time and space, we reanalyse 22 datasets on six species from four previous studies. The results agreed qualitatively with previous analyses in terms of identifying populations and scent compounds subject to stronger selection but also allowed us to evaluate and compare the strength of selection on scent across studies. Doing so revealed that selection on floral scent was highly variable, and overall about as common and as strong as selection on other phenotypic traits involved in pollinator attraction or pollen transfer. These results are consistent with an important role of floral scent in pollinator attraction. Our approach should be useful for further studies of plant-animal communication and for studies of selection on other high-dimensional phenotypes. In particular, our approach will be useful for studies of pollinator-mediated selection on complex scent blends comprising many volatiles, and when no prior information on the physiological responses of pollinators to scent compounds is available.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Animales , Polinización , Flores/fisiología , Feromonas , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...