RESUMEN
Proton pump inhibitors (PPIs) are used by millions of patients for the treatment of stomach acid-reflux diseases. Although PPIs are generally considered safe, about 13% of the users develop hypomagnesemia. Despite rising attention for this issue, the underlying mechanism is still unknown. Here, we examine whether the gut microbiome is involved in the development of PPI-induced hypomagnesemia in wild-type C57BL/6J mice. After 4 wk of treatment under normal or low dietary Mg2+ availability, omeprazole significantly reduced serum Mg2+ levels only in mice on a low-Mg2+ diet without affecting the mRNA expression of colonic or renal Mg2+ transporters. Overall, 16S rRNA gene sequencing revealed a lower gut microbial diversity in omeprazole-treated mice. Omeprazole induced a shift in microbial composition, which was associated with a 3- and 2-fold increase in the abundance of Lactobacillus and Bifidobacterium, respectively. To examine the metabolic consequences of these microbial alterations, the colonic composition of organic acids was evaluated. Low dietary Mg2+ intake, independent of omeprazole treatment, resulted in a 10-fold increase in formate levels. Together, these results imply that both omeprazole treatment and low dietary Mg2+ intake disturb the gut internal milieu and may pose a risk for the malabsorption of Mg2+ in the colon.-Gommers, L. M. M., Ederveen, T. H. A., van der Wijst, J., Overmars-Bos, C., Kortman, G. A. M., Boekhorst, J., Bindels, R. J. M., de Baaij, J. H. F., Hoenderop, J. G. J. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia.
Asunto(s)
Microbioma Gastrointestinal/fisiología , Magnesio/metabolismo , Inhibidores de la Bomba de Protones/efectos adversos , Animales , Bifidobacterium/fisiología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología , Dieta , Lactobacillus/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Omeprazol/efectos adversos , ARN Ribosómico 16S/metabolismoRESUMEN
Hypomagnesemia (blood Mg2+ concentration <0.7 mM) is a common electrolyte disorder in patients with type 2 diabetes (T2D), but the etiology remains largely unknown. In patients with T2D, reduced blood Mg2+ levels are associated with an increased decline in renal function, independent of glycemic control and hypertension. To study the underlying mechanism of this phenomenon, we investigated the renal effects of hypomagnesemia in high-fat-diet (HFD)-fed mice. In mice fed a low dietary Mg2+, the HFD resulted in severe hypomagnesemia within 4 wk. Renal or intestinal Mg2+ wasting was not observed after 16 wk on the diets. Despite the absence of urinary or fecal Mg2+ loss, the HFD induced a reduction in the mRNA expression transient receptor potential melastatin type 6 in both the kidney and colon. mRNA expression of distal convoluted tubule (DCT)-specific genes was down-regulated by the LowMg-HFD, indicating atrophy of the DCT. The low dietary Mg2+ resulted in severe HFD-induced proximal tubule phospholipidosis, which was absent in mice on a NormalMg-HFD. This was accompanied by albuminuria, moderate renal damage, and alterations in renal energy metabolism, including enhanced gluconeogenesis and cholesterol synthesis. In conclusion, this study shows that hypomagnesemia is a consequence of diet-induced obesity and insulin resistance. Moreover, hypomagnesemia induces major structural changes in the diabetic kidney, including proximal tubular phospholipidosis, providing a novel mechanism for the increased renal decline in patients with hypomagnesemic T2D.-Kurstjens, S., Smeets, B., Overmars-Bos, C., Dijkman, H. B., den Braanker, D. J. W., de Bel, T., Bindels, R. J. M., Tack, C. J. J., Hoenderop, J. G. J., de Baaij, J. H. F. Renal phospholipidosis and impaired magnesium handling in high-fat-diet-fed mice.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Túbulos Renales Distales/metabolismo , Túbulos Renales Proximales/metabolismo , Deficiencia de Magnesio/metabolismo , Magnesio/metabolismo , Obesidad/metabolismo , Fosfolípidos/metabolismo , Albuminuria/etiología , Animales , Atrofia , Líquidos Corporales/química , Metabolismo Energético , Heces/química , Resistencia a la Insulina , Túbulos Renales Distales/patología , Túbulos Renales Proximales/patología , Magnesio/administración & dosificación , Magnesio/farmacocinética , Deficiencia de Magnesio/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , Obesidad/complicaciones , ARN Mensajero/biosíntesis , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales Catiónicos TRPM/biosíntesis , Canales Catiónicos TRPM/genéticaRESUMEN
Approximately 30% of patients with type 2 diabetes mellitus (T2D) have hypomagnesemia (blood magnesium (Mg2+) concentration <0.7 mmol/L). In T2D patients, treatment with metformin is associated with reduced blood Mg2+ levels. To investigate how T2D and metformin affect Mg2+ homeostasis db/m and db/db mice were treated with metformin or placebo. Mice were housed in metabolic cages to measure food and water intake, and to collect urine and feces. Serum and urinary Mg2+ concentrations were determined and mRNA expression of magnesiotropic genes was determined in kidney and distal colon using RT-qPCR. Db/db mice had significantly lower serum Mg2+ levels than db/m mice. Mild hypermagnesuria was observed in the db/db mice at two weeks, but not at four weeks. Metformin-treatment had no effect on the serum Mg2+ concentration and on the urinary Mg2+ excretion. Both in kidney and distal colon of db/db mice, there was a compensatory upregulation in the mRNA expression of magnesiotropic genes, such as transient receptor potential melastatin 6 (Trpm6), whereas metformin treatment did not affect gene expression levels. In conclusion, we show that T2D causes hypomagnesemia and that metformin treatment has no effect on Mg2+ homeostasis in mice.
Asunto(s)
Complicaciones de la Diabetes/sangre , Diabetes Mellitus Tipo 2/complicaciones , Hipoglucemiantes/farmacología , Magnesio/sangre , Metformina/farmacología , Animales , Biomarcadores , Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Expresión Génica , Hipoglucemiantes/uso terapéutico , Riñón/efectos de los fármacos , Riñón/metabolismo , Metformina/uso terapéutico , Ratones , Ratones Transgénicos , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismoRESUMEN
AIMS/HYPOTHESIS: The blood triacylglycerol level is one of the main determinants of blood Mg2+ concentration in individuals with type 2 diabetes. Hypomagnesaemia (blood Mg2+ concentration <0.7 mmol/l) has serious consequences as it increases the risk of developing type 2 diabetes and accelerates progression of the disease. This study aimed to determine the mechanism by which triacylglycerol levels affect blood Mg2+ concentrations. METHODS: Using samples from 285 overweight individuals (BMI >27 kg/m2) who participated in the 300-Obesity study (an observational cross-sectional cohort study, as part of the Human Functional Genetics Projects), we investigated the association between serum Mg2+ with laboratory variables, including an extensive lipid profile. In a separate set of studies, hyperlipidaemia was induced in mice and in healthy humans via an oral lipid load, and blood Mg2+, triacylglycerol and NEFA concentrations were measured using colourimetric assays. In vitro, NEFAs harvested from albumin were added in increasing concentrations to several Mg2+-containing solutions to study the direct interaction between Mg2+ and NEFAs. RESULTS: In the cohort of overweight individuals, serum Mg2+ levels were inversely correlated with triacylglycerols incorporated in large VLDL particles (r = -0.159, p ≤ 0.01). After lipid loading, we observed a postprandial increase in plasma triacylglycerol and NEFA levels and a reciprocal reduction in blood Mg2+ concentration both in mice (Δ plasma Mg2+ -0.31 mmol/l at 4 h post oral gavage) and in healthy humans (Δ plasma Mg2+ -0.07 mmol/l at 6 h post lipid intake). Further, in vitro experiments revealed that the decrease in plasma Mg2+ may be explained by direct binding of Mg2+ to NEFAs. Moreover, Mg2+ was found to bind to albumin in a NEFA-dependent manner, evidenced by the fact that Mg2+ did not bind to fatty-acid-free albumin. The NEFA-dependent reduction in the free Mg2+ concentration was not affected by the presence of physiological concentrations of other cations. CONCLUSIONS/INTERPRETATION: This study shows that elevated NEFA and triacylglycerol levels directly reduce blood Mg2+ levels, in part explaining the high prevalence of hypomagnesaemia in metabolic disorders. We show that blood NEFA level affects the free Mg2+ concentration, and therefore, our data challenge how the fractional excretion of Mg2+ is calculated and interpreted in the clinic.
Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Ácidos Grasos no Esterificados/sangre , Magnesio/sangre , Sobrepeso/sangre , Triglicéridos/sangre , Anciano , Anciano de 80 o más Años , Animales , Glucemia/metabolismo , Estudios Transversales , Diabetes Mellitus Experimental/sangre , Femenino , Humanos , Masculino , Ratones , Persona de Mediana EdadRESUMEN
AIMS/HYPOTHESIS: Hypomagnesaemia (blood Mg2+ <0.7 mmol/l) is a common phenomenon in individuals with type 2 diabetes. However, it remains unknown how a low blood Mg2+ concentration affects lipid and energy metabolism. Therefore, the importance of Mg2+ in obesity and type 2 diabetes has been largely neglected to date. This study aims to determine the effects of hypomagnesaemia on energy homeostasis and lipid metabolism. METHODS: Mice (n = 12/group) were fed either a low-fat diet (LFD) or a high-fat diet (HFD) (10% or 60% of total energy) in combination with a normal- or low-Mg2+ content (0.21% or 0.03% wt/wt) for 17 weeks. Metabolic cages were used to investigate food intake, energy expenditure and respiration. Blood and tissues were taken to study metabolic parameters and mRNA expression profiles, respectively. RESULTS: We show that low dietary Mg2+ intake ameliorates HFD-induced obesity in mice (47.00 ± 1.53 g vs 38.62 ± 1.51 g in mice given a normal Mg2+-HFD and low Mg2+-HFD, respectively, p < 0.05). Consequently, fasting serum glucose levels decreased and insulin sensitivity improved in low Mg2+-HFD-fed mice. Moreover, HFD-induced liver steatosis was absent in the low Mg2+ group. In hypomagnesaemic HFD-fed mice, mRNA expression of key lipolysis genes was increased in epididymal white adipose tissue (eWAT), corresponding to reduced lipid storage and high blood lipid levels. Low Mg2+-HFD-fed mice had increased brown adipose tissue (BAT) Ucp1 mRNA expression and a higher body temperature. No difference was observed in energy expenditure between the two HFD groups. CONCLUSIONS/INTERPRETATION: Mg2+-deficiency abrogates HFD-induced obesity in mice through enhanced eWAT lipolysis and BAT activity.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Deficiencia de Magnesio/metabolismo , Obesidad/etiología , Células 3T3-L1 , Animales , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/efectos de los fármacos , Magnesio , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
The PKD1 gene encodes polycystin-1 (PC1), a mechanosensor triggering intracellular responses upon urinary flow sensing in kidney tubular cells. Mutations in PKD1 lead to autosomal dominant polycystic kidney disease (ADPKD). The involvement of PC1 in renal electrolyte handling remains unknown since renal electrolyte physiology in ADPKD patients has only been characterized in cystic ADPKD. We thus studied the renal electrolyte handling in inducible kidney-specific Pkd1 knockout (iKsp- Pkd1-/-) mice manifesting a precystic phenotype. Serum and urinary electrolyte determinations indicated that iKsp- Pkd1-/- mice display reduced serum levels of magnesium (Mg2+), calcium (Ca2+), sodium (Na+), and phosphate (Pi) compared with control ( Pkd1+/+) mice and renal Mg2+, Ca2+, and Pi wasting. In agreement with these electrolyte disturbances, downregulation of key genes for electrolyte reabsorption in the thick ascending limb of Henle's loop (TA;, Cldn16, Kcnj1, and Slc12a1), distal convoluted tubule (DCT; Trpm6 and Slc12a3) and connecting tubule (CNT; Calb1, Slc8a1, and Atp2b4) was observed in kidneys of iKsp- Pkd1-/- mice compared with controls. Similarly, decreased renal gene expression of markers for TAL ( Umod) and DCT ( Pvalb) was observed in iKsp- Pkd1-/- mice. Conversely, mRNA expression levels in kidney of genes encoding solute and water transporters in the proximal tubule ( Abcg2 and Slc34a1) and collecting duct ( Aqp2, Scnn1a, and Scnn1b) remained comparable between control and iKsp- Pkd1-/- mice, although a water reabsorption defect was observed in iKsp- Pkd1-/- mice. In conclusion, our data indicate that PC1 is involved in renal Mg2+, Ca2+, and water handling and its dysfunction, resulting in a systemic electrolyte imbalance characterized by low serum electrolyte concentrations.