Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
3.
AAPS J ; 26(1): 3, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036919

RESUMEN

Therapeutic fusion proteins are a class of hybrid constructs that combine distinct biomolecules into a single platform with the additive effects of the components. The ability to fuse two unrelated proteins provides a means to localize mechanisms to better treat a range of diseases. Fusion proteins can be designed to impart diverse functions, including increasing half-life, providing targeting, and enabling sustained signaling. Of these, half-life extenders, which are fused to a therapeutic protein to increase exposure, are the most established group of fusion proteins, with many clinical successes. Rapid advances in antibody and antibody-derivative technology have enabled the fusion of targeting domains with therapeutic proteins. An emerging group of therapeutic fusion proteins has two separate active functions. Although most research for therapeutic fusion proteins focuses on cancer, prior successes provide a foundation for studies into other diseases as well. The exponential emergence of biopharmaceuticals gives precedence for increased research into therapeutic fusion proteins for a multitude of diseases.


Asunto(s)
Neoplasias , Proteínas , Humanos , Proteínas/uso terapéutico , Anticuerpos , Neoplasias/tratamiento farmacológico , Proteínas Recombinantes de Fusión/uso terapéutico
4.
bioRxiv ; 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37645727

RESUMEN

Lysine acylation can direct protein function, localization, and interactions. Sirtuins deacylate lysine towards maintaining cellular homeostasis, and their aberrant expression contributes to the pathogenesis of multiple pathological conditions, including cancer. Measuring sirtuins' activity is essential to exploring their potential as therapeutic targets, but accurate quantification is challenging. We developed 'SIRTify', a high-sensitivity assay for measuring sirtuin activity in vitro and in vivo. SIRTify is based on a split-version of the NanoLuc® luciferase consisting of a truncated, catalytically inactive N-terminal moiety (LgBiT) that complements with a high-affinity C-terminal peptide (p86) to form active luciferase. Acylation of two lysines within p86 disrupts binding to LgBiT and abates luminescence. Deacylation by sirtuins reestablishes p86 and restores binding, generating a luminescence signal proportional to sirtuin activity. Measurements accurately reflect reported sirtuin specificity for lysine acylations and confirm the effects of sirtuin modulators. SIRTify effectively quantifies lysine deacylation dynamics and may be adaptable to monitoring additional post-translational modifications.

5.
ACS Med Chem Lett ; 13(11): 1769-1775, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385932

RESUMEN

Antibodies have been explored for decades for the delivery of small molecule cytotoxins directly to diseased cells. In antibody-directed enzyme prodrug therapy (ADEPT), antibodies are armed with enzymes that activate nontoxic prodrugs at tumor sites. However, this strategy failed clinically due to off-target toxicity associated with the enzyme prematurely activating prodrug systemically. We describe here the design of an antibody-fragment split enzyme platform that regains activity after binding to HER2, allowing for site-specific activation of a small molecule prodrug. We evaluated a library of fusion constructs for efficient targeting and complementation to identify the most promising split enzyme pair. The optimal pair was screened for substrate specificity among chromogenic, fluorogenic, and prodrug substrates. Evaluation of this system on HER2-positive cells revealed 7-fold higher toxicity of the activated prodrug over prodrug treatment alone. Demonstrating the potential of this strategy against a known clinical target provides the basis for a unique therapeutic platform in oncology.

6.
Nat Commun ; 13(1): 3716, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778399

RESUMEN

The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Humanos , Luciferasas , Glicoproteínas de Membrana/metabolismo , Pruebas de Neutralización , Pandemias , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral
7.
Int J Pharm ; 610: 121272, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34763035

RESUMEN

Antibody drug-conjugates (ADCs) targeting human epidermal growth factor (HER2) are a rapidly expanding class of cancer therapeutics. Such ADCs are known to suffer from inefficient trafficking to the lysosome due to HER2 endosomal recycling, leaving most bound ADCs at the cell surface or in early endosomes. This study aims to increase the maximum cytotoxicity of ADC treatment by co-delivering a small molecule inhibitor targeting the primary chaperone of HER2, heat shock protein 90 (HSP90). We hypothesized that inhibiting HSP90 could aid ADC cytotoxicity by overcoming HER2 endosomal recycling. Flow cytometric studies tracking HER2 surface expression revealed âˆ¼ 10 nM geldanamycin (GA) as the threshold for inhibiting HSP90 mediated HER2 recycling. Cytotoxicity studies in HER2 overexpressing cancer cell lines NCI-N87, MDA-MB-453, and SKOV3 demonstrated that co-administration of ADC alongside 100 nM GA significantly increased cytotoxicity compared to ADC alone. In all cases, baseline cytotoxicity was observed even in low HER2 expressing line MDA-MB-231 cells, indicating possible off-target effects. To mitigate this baseline cytotoxicity, a "pulse treatment" regime was adopted where cells are pre-loaded with T-DM1 or T-MMAE ADCs for 4 h, followed by a 4-hour pulse treatment with ADC and 100 nM GA to initiate trafficking of HER2 bound ADC to the lysosome. Afterwards, GA is removed, and ADC treatment is continued. GA pulse co-treatment decreased the amount of ADC required to achieve maximum cytotoxicity while minimizing baseline cytotoxicity. No such co-treatment regime featuring a pulse sequence has been explored before. Such co-treatments could offer a viable solution to increase ADC efficacy in hard to treat or resistant HER2-positive cancers.


Asunto(s)
Inmunoconjugados , Benzoquinonas , Línea Celular Tumoral , Humanos , Lactamas Macrocíclicas , Receptor ErbB-2 , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Acta Biomater ; 135: 225-233, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34496282

RESUMEN

Over 30,000 protein-protein interactions with pathological implications have been identified; yet, discovering and investigating drugs that target these specific interactions is greatly limited by the inability to monitor native protein-protein interactions (PPIs) efficiently. The two most frequently used tools to monitor PPIs, resonance-energy transfer (RET) assays and protein complementation assays (PCA), face significant limitations. RET assays have a narrow working range of 10 to 50 Å, while PCA require permanent attachment of a reporter probe to a protein of interest by chemical conjugation or genetic engineering. We developed a non-invasive assay platform to measure PPIs without modifications to the proteins of interest and is functional at a greater working range than RET assays. We demonstrate our approach by monitoring the EGFR-HER2 heterodimerization on relevant cell surfaces, utilizing various EGFR- and HER2-specific binders (e.g., Fab, DARPin, and VHH) fused with small fragments of a tri-part split-luciferase derived from NanoLuc®. Following independent binding of the binder fusions to their respective targets, the dimerization of EGFR and HER2 induces complementation of the luciferase fragments into a functional native structure, producing glow-type luminescence. We have confirmed the functionality of the platform to monitor EGFR-HER2 dimerization induction and inhibition. STATEMENT OF SIGNIFICANCE: We describe a platform technology for rapid monitoring of protein-protein interactions (PPIs). Our approach is uses a luciferase split into three parts - two short peptide "tags" and a large third fragment. Each of the short peptides can be fused to antibodies which bind to domains of a target antigens which orients the two tags and facilitates refolding of an active enzyme. To our knowledge this is the first example of a split-enzyme used to monitor PPIs without requiring any modification of the target proteins. We demonstrate our approach on the important PPI of HER2 and EGFR. Significantly, we quantify stimulation and inhibition of these partners, opening the possibility of using our approach to assess potential drugs without engineering cells.


Asunto(s)
Anticuerpos , Receptores ErbB , Dimerización , Receptores ErbB/metabolismo , Técnicas para Inmunoenzimas , Luciferasas
9.
Blood Cancer Discov ; 2(3): 266-287, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34027418

RESUMEN

We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.


Asunto(s)
Leucemia Mieloide Aguda , Sirtuinas , Apoptosis , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Lisina/metabolismo , Mitocondrias/genética , Fosforilación Oxidativa , Sirtuinas/genética
10.
ACS Sens ; 6(5): 1807-1814, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34010570

RESUMEN

Anti-TNF therapeutics bind and sequester tumor necrosis factor (TNF) to prevent downstream signaling and are clinically important in the treatment of several autoimmune diseases. Effective treatment with these drugs requires frequent therapeutic drug monitoring (TDM). Current analytical methods, including reporter gene assay (RGA), enzyme-linked immunosorbent assay (ELISA), and mobility shift assay (MSA), can be technically rigorous, slow, and expensive. These qualities prevent the implementation of point-of-care testing and ultimately limit the frequency and utility of monitoring. An assay simple enough to be performed in the clinic would enable increased TDM frequency, more accurate dosing, and improved patient outcomes. Toward this end, we developed a homogeneous immunoassay based on a tri-part split-luciferase system for "add-and-read" detection of anti-TNF therapeutics. In our platform, two small fragments of the split-luciferase, called ß9 and ß10, are each fused to a different interacting protein. The binding of each of these proteins to anti-TNF antibodies forces the split-luciferase components into proximity where they reform the active luciferase. We identified the fusion proteins, ß9-protein A (ß9-A) and ß10-TNF, as promising binding pairs. We systematically adjusted assay conditions to optimize the signal/background (S/B) ratio, limit of detection (LOD), and percent recovery. The assay has a large dynamic range (0.5-32 µg/mL) and is sensitive enough to monitor both subtherapeutic and supratherapeutic serum concentrations of anti-TNF antibodies, as demonstrated in clinical samples.


Asunto(s)
Inhibidores del Factor de Necrosis Tumoral , Factor de Necrosis Tumoral alfa , Humanos , Inmunoensayo , Infliximab , Luciferasas/genética
11.
Nat Commun ; 12(1): 1806, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753733

RESUMEN

Better diagnostic tools are needed to combat the ongoing COVID-19 pandemic. Here, to meet this urgent demand, we report a homogeneous immunoassay to detect IgG antibodies against SARS-CoV-2. This serological assay, called SATiN, is based on a tri-part Nanoluciferase (tNLuc) approach, in which the spike protein of SARS-CoV-2 and protein G, fused respectively to two different tNLuc tags, are used as antibody probes. Target engagement of the probes allows reconstitution of a functional luciferase in the presence of the third tNLuc component. The assay is performed directly in the liquid phase of patient sera and enables rapid, quantitative and low-cost detection. We show that SATiN has a similar sensitivity to ELISA, and its readouts are consistent with various neutralizing antibody assays. This proof-of-principle study suggests potential applications in diagnostics, as well as disease and vaccination management.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba de COVID-19/métodos , COVID-19/diagnóstico , Inmunoensayo/métodos , Luciferasas/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/virología , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología
12.
Bioconjug Chem ; 31(8): 1960-1970, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32609496

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in synovial joints and protease-induced cartilage degradation. Current biologic treatments for RA can effectively reduce symptoms, primarily by neutralizing the proinflammatory cytokine TNFα; however, continued, indiscriminate overinhibition of inflammatory factors can significantly weaken the host immune system, leading to opportunistic infections and interrupting treatment. We hypothesize that localizing anti-TNFα therapeutics to denatured collagen (dCol) present at arthritic joints, via conjugation with collagen-hybridizing peptides (CHPs), will reduce off-site antigen binding and maintain local immunosuppression. We isolated the antigen-binding fragment of the clinically approved anti-TNFα therapeutic infliximab (iFab) and prepared iFab-CHP conjugates via lysine-based conjugation with an SMCC linker. After successful conjugation, confirmed by LC-MS, the binding affinity of iFab-CHP was characterized by ELISA-like assays, which showed comparable antigen binding relative to infliximab, comparable dCol binding relative to CHP, and the hybrid ability to bind both dCol and TNFα simultaneously. We further demonstrated localization of Fab-CHP to areas of high dCol in vivo and promising therapeutic efficacy, assessed by histological staining (Safranin-O and H&E), in a pilot mouse study.


Asunto(s)
Colágeno/química , Fragmentos Fab de Inmunoglobulinas/química , Péptidos/química , Animales , Anticuerpos , Antígenos , Antirreumáticos/química , Antirreumáticos/farmacología , Cromatografía Liquida , Femenino , Fragmentos Fab de Inmunoglobulinas/inmunología , Infliximab/química , Infliximab/farmacología , Espectrometría de Masas , Ratones , Ratones Desnudos , Ratones Transgénicos , Unión Proteica , Factor de Necrosis Tumoral alfa
13.
Biochim Biophys Acta Biomembr ; 1862(9): 183348, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428448

RESUMEN

The ubiquitous presence of hyaluronic acid (HA) in the extracellular matrix (ECM) of both healthy and diseased tissues underscores its importance in human physiology. Previous studies suggest that HA can be used as a probe to qualitatively monitor cell surface levels of CD44 and other important HA receptors; however, these studies use mixtures of HA at various molecular weights. Using fluorescently labeled HA, we evaluated the apparent differences of low (25 kilodalton) and high (700 kilodalton) molecular weight HA interacting with breast cancer cell lines of varying levels of CD44. Our results confirm that CD44 expression and the apparent level of HA interaction correlates with molecular weight. Importantly, we show that HA only binds a small fraction of the major CD44 isoform, CD44S, on cell surfaces and that CD44S interactions account for <50% of the total HA bound to cell surfaces. Although increased fluorescence level correlates with higher molecular weight of HA, this appears to be an artifact of chain length and not a result of multivalent binding between HA and CD44S. Accordingly, we verify that HA binding characteristics of cell surfaces is similar to previous artificial membrane models which proposed that HA anchors to CD44S and forms a non-binding corona of HA that extends beyond the surface.


Asunto(s)
Antígenos de Superficie/química , Membrana Celular/efectos de los fármacos , Receptores de Hialuranos/química , Ácido Hialurónico/química , Antígenos de Superficie/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Membrana Celular/química , Matriz Extracelular/química , Matriz Extracelular/genética , Humanos , Receptores de Hialuranos/antagonistas & inhibidores , Ácido Hialurónico/farmacología , Peso Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Propiedades de Superficie
14.
J Control Release ; 319: 285-299, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31899273

RESUMEN

Incorporating targeting moieties that recognize cancer-specific cellular markers can enhance specificity of anticancer nanomedicines. The HER2 receptor is overexpressed on numerous cancers, making it an attractive target. However, unlike many receptors that trigger endocytosis upon ligand binding, HER2 is an internalization-resistant receptor. As most chemotherapeutics act on intracellular targets, this presents a significant challenge for exploiting HER2 overexpression for improved tumor killing. However, hyper-crosslinking of HER2 has been shown to override the receptor's native behavior and trigger internalization. This research co-opts this crosslinking-mediated internalization for efficient intracellular delivery of an anticancer nanomedicine - specifically a HPMA copolymer-based drug delivery system. This polymeric carrier was conjugated with a small (7 kDa) HER2-binding affibody peptide to produce a panel of polymer-affibody conjugates with valences from 2 to 10 peptides per polymer chain. The effect of valence on surface binding and uptake was evaluated separately. All conjugates demonstrated similar (nanomolar) binding affinity towards HER2-positive ovarian carcinoma cells, but higher-valence conjugates induced more rapid endocytosis, with over 90% of the surface-bound conjugate internalized within 4 h. Furthermore, this enhancement was sensitive to crowding - high surface loading reduced conjugates' ability to crosslink receptors. Collectively, this evidence strongly supports a crosslinking-mediated endocytosis mechanism. Lead candidates from this panel achieved high intracellular delivery even at picomolar treatment concentrations; untargeted HPMA copolymers required 1000-fold higher treatment concentrations to achieve similar levels of intracellular accumulation. This increased intracellular delivery also translated to a more potent nanomedicine against HER2-positive cells; incorporation of the chemotherapeutic paclitaxel into this targeted carrier enhanced cytotoxicity over untargeted polymer-drug conjugate.


Asunto(s)
Preparaciones Farmacéuticas , Polímeros , Línea Celular Tumoral , Doxorrubicina , Sistemas de Liberación de Medicamentos , Endocitosis
16.
Artículo en Inglés | MEDLINE | ID: mdl-30968595

RESUMEN

Antibodies are an important class of therapeutic for treating a wide range of diseases. These versatile macromolecules can be engineered to target many different antigens and to utilize several mechanisms of action to produce a pharmacological effect. The most common antibody platform used for therapeutics is immunoglobulin G (IgG). Advances in protein-display and genetic engineering have enabled the construction and manipulation of IgG to enhance desired activity such as increasing antigen affinity, modulating pharmacokinetics, and enhancing effector functions. IgGs can also be altered to suppress undesired effects, such as immunogenicity. The main approaches to control IgG behavior include engineering the protein sequence and glycosylation of intact IgG; constructing IgG-based derivatives, including bispecific and multivalent binders; and fusing small-drug molecules or proteins to IgG-derived scaffolds. Often, a single modification applied to a given IgG can alter more than one property. The desired effects of an antibody therapeutic should be carefully tailored to the physiology and characteristics of each disease condition. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Peptide-Based Structures.


Asunto(s)
Anticuerpos/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Humanos , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/uso terapéutico
17.
Biotechnol Bioeng ; 116(7): 1575-1583, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30934115

RESUMEN

Expressing, isolating, and characterizing recombinant proteins is crucial to many disciplines within the biological sciences. Different molecular tagging technologies have been developed to enable each individual step of protein production, from expression through purification and characterization. Monitoring the entire production process requires multiple tags or molecular interactions, because no individual tag has provided the comprehensive breadth of utility. An ideal molecular tag is small and does not interrupt expression, solubility, folding or function of the protein being purified and can be used throughout the production process. We adapted and integrated a split-luciferase system (NanoBiT®, Promega ®) to perform the range of techniques essential to protein production. We developed a simple method to monitor protein expression in real time to optimize expression conditions. We constructed a novel affinity chromatography system using the split-luciferase system to enable purification. We adapted western blot analysis, enzyme-linked immunosorbent assay, and cell-based bioassay to characterize the expressed proteins. Our results demonstrate that a single-tag can fulfill all aspects needed throughout protein production.


Asunto(s)
Cromatografía de Afinidad , Clonación Molecular , Proteínas Recombinantes de Fusión , Línea Celular , Humanos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
18.
J Pharm Sci ; 107(7): 1858-1869, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29626535

RESUMEN

The commercially available antibody-drug conjugate (ADC) product, Kadcyla® is synthesized using a 2-step reaction, wherein the linker is conjugated to native lysines on the mAb in step 1, followed by drug conjugation to the linker-modified antibody in step 2. In our study, we synthesized a lysine-conjugated ADC (Syn-ADC) on the same trastuzumab scaffold as Kadcyla® using a 1-step reaction. Mass spectrometry of both products revealed a subpopulation of Kadcyla® containing free linkers conjugated to the mAb, but not conjugated to the drug, which were absent in the 1-step reaction ADC product. Differential scanning calorimetry thermograms showed that the drug and linker conjugation significantly reduced the thermal stability and energies of activation for the denaturation of the CH2 domain of the ADCs. The heating induced aggregation events started as early as ∼57°C and ∼45°C for Kadcyla® and Syn-ADC, respectively, compared with 71°C for Herceptin®. The colloidal stability measurements clearly showed that the hydrophobic drug payload on ADCs significantly reduced the repulsive interprotein interactions when compared to the unconjugated antibody under formulation buffer conditions (pH 6.0). Attaching hydrophobic drug and linker moieties onto the antibody lowered the thermal and colloidal stabilities and increased the aggregation propensity of the ADCs.


Asunto(s)
Antineoplásicos Inmunológicos/química , Inmunoconjugados/química , Lisina/química , Maitansina/análogos & derivados , Agregado de Proteínas , Trastuzumab/química , Ado-Trastuzumab Emtansina , Antineoplásicos Inmunológicos/síntesis química , Rastreo Diferencial de Calorimetría , Cromatografía Liquida , Dicroismo Circular , Coloides/síntesis química , Coloides/química , Calefacción , Lisina/síntesis química , Espectrometría de Masas , Maitansina/síntesis química , Maitansina/química , Estabilidad Proteica , Espectrometría Raman
19.
Antibodies (Basel) ; 7(1)2018 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31544859

RESUMEN

Antibody drug conjugates are a rapidly growing form of targeted chemotherapeutics. As companies and researchers move to develop new antibody-drug conjugate (ADC) candidates, high-throughput methods will become increasingly common. Here we use advanced characterization techniques to assess two trastuzumab-DM1 (T-DM1) ADCs; one produced using Protein A immobilization and the other produced in solution. Following determination of payload site and distribution with liquid chromatography-mass spectrometry (LC/MS), thermal stability, heat-induced aggregation, tertiary structure, and binding affinity were characterized using differential scanning calorimetry (DSC), dynamic light scattering (DLS), Raman spectroscopy, and isothermal titration calorimetry (ITC), respectively. Small differences in the thermal stability of the CH2 domain of the antibody as well as aggregation onset temperatures were observed from DSC and DLS, respectively. However, no significant differences in secondary and tertiary structure were observed with Raman spectroscopy, or binding affinity as measured by ITC. Lysine-based ADC conjugation produces an innately heterogeneous population that can generate significant variability in the results of sensitive characterization techniques. Characterization of these ADCs indicated nominal differences in thermal stability but not in tertiary structure or binding affinity. Our results lead us to conclude that lysine-based ADCs synthesized following Protein A immobilization, common in small-scale conjugations, are highly similar to equivalent ADCs produced in larger scale, solution-based methods.

20.
J Drug Target ; 26(7): 533-550, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29096548

RESUMEN

Vaginal drug delivery represents an attractive strategy for local and systemic delivery of drugs otherwise poorly absorbed after oral administration. The rather dense vascular network, mucus permeability and the physiological phenomenon of the uterine first-pass effect can all be exploited for therapeutic benefit. However, several physiological factors such as an acidic pH, constant secretion, and turnover of mucus as well as varying thickness of the vaginal epithelium can impact sustained drug delivery. In recent years, polymers have been designed to tackle challenges mentioned above. In particular, thermosensitive hydrogels hold great promise due to their stability, biocompatibility, adhesion properties and adjustable drug release kinetics. Here, we discuss the physiological and anatomical uniqueness of the vaginal environment and how it impacts the safe and efficient vaginal delivery and also reviewed several thermosensitive hydrogels deemed suitable for vaginal drug delivery by addressing specific characteristics, which are essential to engage the vaginal environment successfully.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles/administración & dosificación , Vagina , Femenino , Humanos , Temperatura , Vagina/anatomía & histología , Vagina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA