Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Temperature (Austin) ; 10(1): 67-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187836

RESUMEN

TRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes. Additional insights from TRPV1 isoforms and non-rodent/non-human TRPV1 ortholog studies are also discussed in this context. While the molecular mechanism of heat activation is still emerging, it is clear that TRPV1 thermosensing is modulated allosterically, i.e., at a distance, with contributions from many distinct regions of the channel. Similarly, current studies identify cross-talk between heat and other TRPV1 activation modes, such as protons and capsaicin, and that these modes can generally be selectively disentangled. In aggregate, this suggests that future TRPV1 molecular studies should define allosteric pathways and provide mechanistic insight, thereby enabling mode-selective manipulation of the polymodal receptor. These advances are anticipated to have significant implications in both basic and applied biomedical sciences.

2.
Sci Rep ; 13(1): 3915, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890276

RESUMEN

Uracil DNA-glycosylase (UNG) is a DNA repair enzyme that removes the highly mutagenic uracil lesion from DNA using a base flipping mechanism. Although this enzyme has evolved to remove uracil from diverse sequence contexts, UNG excision efficiency depends on DNA sequence. To provide the molecular basis for rationalizing UNG substrate preferences, we used time-resolved fluorescence spectroscopy, NMR imino proton exchange measurements, and molecular dynamics simulations to measure UNG specificity constants (kcat/KM) and DNA flexibilities for DNA substrates containing central AUT, TUA, AUA, and TUT motifs. Our study shows that UNG efficiency is dictated by the intrinsic deformability around the lesion, establishes a direct relationship between substrate flexibility modes and UNG efficiency, and shows that bases immediately adjacent to the uracil are allosterically coupled and have the greatest impact on substrate flexibility and UNG activity. The finding that substrate flexibility controls UNG efficiency is likely significant for other repair enzymes and has major implications for the understanding of mutation hotspot genesis, molecular evolution, and base editing.


Asunto(s)
Uracil-ADN Glicosidasa , ADN/química , Reparación del ADN , Mutagénesis , Uracilo , Uracil-ADN Glicosidasa/química , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...