Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 12(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35864904

RESUMEN

Caenorhabditis elegans is a simple metazoan that is often used as a model organism to study various human ailments with impaired motility phenotypes, including protein conformational diseases. Numerous motility assays that measure neuro-muscular function have been employed using C. elegans . Here, we describe "time-off-pick" (TOP), a novel assay for assessing motility in C. elegans . TOP is conducted by sliding an eyebrow hair under the mid-section of the worm and counting the number of seconds it takes for the worm to crawl completely off. The time it takes for the worm to crawl off the eyebrow hair is proportional to the severity of its motility defect. Other readouts of motility include crawling or swimming phenotypes, and although widely established, have some limitations. For example, worms that are roller mutants are less suitable for crawling or swimming assays. We demonstrated that our novel TOP assay is sensitive to age-dependent changes in motility, thus, providing another more inclusive method to assess motor function in C. elegans . Graphical abstract: Conceptual overview of the "time-off-pick" (TOP) assay. Various C. elegans models exhibit age-dependent defects in motility. The time it takes for a worm to crawl off of an eyebrow pick that is slid under its mid-section is measured in TOP seconds. A greater TOP is indicative of a greater motility defect. Eventually, worms with phenotypes that lead to paralysis will not be able to leave the pick.

2.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563197

RESUMEN

Neurodegenerative protein conformational diseases are characterized by the misfolding and aggregation of metastable proteins encoded within the host genome. The host is also home to thousands of proteins encoded within exogenous genomes harbored by bacteria, fungi, and viruses. Yet, their contributions to host protein-folding homeostasis, or proteostasis, remain elusive. Recent studies, including our previous work, suggest that bacterial products contribute to the toxic aggregation of endogenous host proteins. We refer to these products as bacteria-derived protein aggregates (BDPAs). Furthermore, antibiotics were recently associated with an increased risk for neurodegenerative diseases, including Parkinson's disease and amyotrophic lateral sclerosis-possibly by virtue of altering the composition of the human gut microbiota. Other studies have shown a negative correlation between disease progression and antibiotic administration, supporting their protective effect against neurodegenerative diseases. These contradicting studies emphasize the complexity of the human gut microbiota, the gut-brain axis, and the effect of antibiotics. Here, we further our understanding of bacteria's effect on host protein folding using the model Caenorhabditis elegans. We employed genetic and chemical methods to demonstrate that the proteotoxic effect of bacteria on host protein folding correlates with the presence of BDPAs. Furthermore, the abundance and proteotoxicity of BDPAs are influenced by gentamicin, an aminoglycoside antibiotic that induces protein misfolding, and by butyrate, a short-chain fatty acid that we previously found to affect host protein aggregation and the associated toxicity. Collectively, these results increase our understanding of host-bacteria interactions in the context of protein conformational diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Deficiencias en la Proteostasis , Animales , Antibacterianos , Bacterias/metabolismo , Caenorhabditis elegans/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Proteínas/metabolismo , Proteostasis , Deficiencias en la Proteostasis/metabolismo
3.
Prog Neurobiol ; 112: 24-49, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24211851

RESUMEN

Autophagy and apoptosis are basic physiologic processes contributing to the maintenance of cellular homeostasis. Autophagy encompasses pathways that target long-lived cytosolic proteins and damaged organelles. It involves a sequential set of events including double membrane formation, elongation, vesicle maturation and finally delivery of the targeted materials to the lysosome. Apoptotic cell death is best described through its morphology. It is characterized by cell rounding, membrane blebbing, cytoskeletal collapse, cytoplasmic condensation, and fragmentation, nuclear pyknosis, chromatin condensation/fragmentation, and formation of membrane-enveloped apoptotic bodies, that are rapidly phagocytosed by macrophages or neighboring cells. Neurodegenerative disorders are becoming increasingly prevalent, especially in the Western societies, with larger percentage of members living to an older age. They have to be seen not only as a health problem, but since they are care-intensive, they also carry a significant economic burden. Deregulation of autophagy plays a pivotal role in the etiology and/or progress of many of these diseases. Herein, we briefly review the latest findings that indicate the involvement of autophagy in neurodegenerative diseases. We provide a brief introduction to autophagy and apoptosis pathways focusing on the role of mitochondria and lysosomes. We then briefly highlight pathophysiology of common neurodegenerative disorders like Alzheimer's diseases, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Then, we describe functions of autophagy and apoptosis in brain homeostasis, especially in the context of the aforementioned disorders. Finally, we discuss different ways that autophagy and apoptosis modulation may be employed for therapeutic intervention during the maintenance of neurodegenerative disorders.


Asunto(s)
Apoptosis , Autofagia , Encefalopatías/fisiopatología , Encéfalo/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/patología , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Animales , Encéfalo/patología , Encefalopatías/patología , Humanos , Enfermedades Neurodegenerativas/patología , Enfermedades del Sistema Nervioso Periférico/patología
4.
Br J Pharmacol ; 148(4): 459-68, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16702994

RESUMEN

Adrenomedullin (AM) and calcitonin gene-related peptide (CGRP) have structural similarities, interact with each others receptors (calcitonin receptor-like receptor (CLR)/receptor-activity-modifying proteins (RAMPs)) and show overlapping biological activities. AM and CGRP receptors are chiefly coupled to cAMP production. In this study, a method of primary dissociated cell culture was used to investigate the presence of AM and CGRP receptors and their effects on cAMP production in embryonic spinal cord cells. Both neuronal and non-neuronal CLR immunopositive cells were present in our model. High affinity, specific [(125)I]-AM binding sites (K(d) 79 +/- 9 pM and B(max) 571 +/- 34 fmol mg(-1) protein) were more abundant than specific [(125)I]-CGRP binding sites (K(d) 12 +/- 0.7 pM and B(max) 32 +/- 2 fmol mg(-1) protein) in embryonic spinal cord cells. Specific [(125)I]-AM binding was competed by related molecules with a ligand selectivity profile of rAM > hAM(22-52) > rCGRPalpha > CGRP(8-37) >> [r-(r(*),s(*))]-N-[2-[[5-amino-1-[[4-(4-pyridinyl)-1-piperazinyl]carbonyl]pentyl]amino]-1-[(3,5-dibromo-4-hydroxyphenyl)methyl]-2-oxoethyl]-4-(1,4-dihydro-2-oxo-3(2H)-quinazolinyl)-,1-piperidinecarboxamide (BIBN4096BS). Specific [(125)I]-CGRP binding was competed by rCGRPalpha > rAM > or = CGRP(8-37) > or = BIBN4096BS > hAM(22-52). Cellular levels of cAMP were increased by AM (pEC(50) 10.2 +/- 0.2) and less potently by rCGRPalpha (pEC(50) 8.9 +/- 0.4). rCGRPalpha-induced cAMP accumulation was effectively inhibited by CGRP(8-37) (pA(2) 7.63 +/- 0.44) and hAM(22-52) (pA(2) 6.18 +/- 0.21) while AM-stimulation of cAMP levels was inhibited by CGRP(8-37) (pA(2) 7.41+/- 0.15) and AM(22-52) (pA(2) 7.26 +/- 0.18). BIBN4096BS only antagonized the effects of CGRP (pA(2) 8.40 +/- 0.30) on cAMP accumulation. These pharmacological profiles suggest that effects of CGRP are mediated by the CGRP(1) (CLR/RAMP1) receptor in our model while those of AM are related to the activation of the AM(1) (CLR/RAMP2) receptor subtype.


Asunto(s)
AMP Cíclico/fisiología , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Médula Espinal/metabolismo , Adrenomedulina , Animales , Sitios de Unión , Unión Competitiva , Péptido Relacionado con Gen de Calcitonina/farmacología , Células Cultivadas , Femenino , Inmunohistoquímica , Fragmentos de Péptidos/farmacología , Piperazinas/farmacología , Quinazolinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Adrenomedulina , Médula Espinal/citología , Médula Espinal/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA