Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antib Ther ; 5(1): 11-17, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35059561

RESUMEN

The most robust strategy in antibody discovery is the use of immunized animals and the ability to isolate and immortalize immune B-cells to hybridoma for further interrogation. However, capturing the full repertoire of an immunized animal is labor intensive, time consuming and limited in throughput. Therefore, techniques to directly mine the antibody repertoire of primary B-cells are of great importance in antibody discovery. In the current study, we present a method to isolate individual antigen-specific primary B-cells using the CellCellector™ single-cell isolation platform from XenoMouse® (XM) immunized with a recombinant therapeutic protein, EGFR. We screened a subset of CD138+ B-cells and identified 238 potential EGFR-specific B-cells from 1189 antibody-secreting cells (ASCs) and isolated 94 by CellCellector. We identified a diverse set of heavy chain complementarity-determining region sequences and cloned and expressed 20 into a standard human immunoglobulin G1 antibody format. We further characterized and identified 13 recombinant antibodies that engage soluble and native forms of EGFR. By extrapolating the method to all 400 000 CD138+ B-cells extracted from one EGFR immunized XM, a potential 1196 unique EGFR-specific antibodies could be discovered. CellCelector allows for interrogating the B-cell pool directly and isolating B-cells specific to the therapeutic target of interest. Furthermore, antibody sequences recovered from isolated B-cells engage the native and recombinant target, demonstrating the CellCellector can serve as a platform in antibody discovery.

2.
Sci Rep ; 10(1): 1130, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980674

RESUMEN

Multi-pass membrane proteins are important targets of biologic medicines. Given the inherent difficulties in working with membrane proteins, we sought to investigate the utility of membrane scaffold protein nanodiscs as a means of solubilizing membrane proteins to aid antibody discovery. Using a model multi-pass membrane protein, we demonstrate how incorporation of a multi-pass membrane protein into nanodiscs can be used in flow cytometry to identify antigen-specific hybridoma. The use of target protein-loaded nanodiscs to sort individual hybridoma early in the screening process can reduce the time required to identify antibodies against multi-pass membrane proteins.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Citometría de Flujo/métodos , Hibridomas/citología , Inmunoglobulina G/inmunología , Proteínas de la Membrana/inmunología , Nanoestructuras , Animales , Especificidad de Anticuerpos , Reacciones Antígeno-Anticuerpo , Arcobacter/química , Proteínas Bacterianas/química , Sistemas de Liberación de Medicamentos , Hibridomas/inmunología , Ratones , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.7/química , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes de Fusión/química , Solubilidad
3.
Nature ; 533(7602): 269-73, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27135929

RESUMEN

Mitochondria from many eukaryotic clades take up large amounts of calcium (Ca(2+)) via an inner membrane transporter called the uniporter. Transport by the uniporter is membrane potential dependent and sensitive to ruthenium red or its derivative Ru360 (ref. 1). Electrophysiological studies have shown that the uniporter is an ion channel with remarkably high conductance and selectivity. Ca(2+) entry into mitochondria is also known to activate the tricarboxylic acid cycle and seems to be crucial for matching the production of ATP in mitochondria with its cytosolic demand. Mitochondrial calcium uniporter (MCU) is the pore-forming and Ca(2+)-conducting subunit of the uniporter holocomplex, but its primary sequence does not resemble any calcium channel studied to date. Here we report the structure of the pore domain of MCU from Caenorhabditis elegans, determined using nuclear magnetic resonance (NMR) and electron microscopy (EM). MCU is a homo-oligomer in which the second transmembrane helix forms a hydrophilic pore across the membrane. The channel assembly represents a new solution of ion channel architecture, and is stabilized by a coiled-coil motif protruding into the mitochondrial matrix. The critical DXXE motif forms the pore entrance, which features two carboxylate rings; based on the ring dimensions and functional mutagenesis, these rings appear to form the selectivity filter. To our knowledge, this is one of the largest membrane protein structures characterized by NMR, and provides a structural blueprint for understanding the function of this channel.


Asunto(s)
Caenorhabditis elegans/química , Canales de Calcio/química , Secuencias de Aminoácidos , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Microscopía Electrónica , Mitocondrias/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad
4.
Protein Sci ; 25(5): 959-73, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26928605

RESUMEN

By nature of conducting ions, transporting substrates and transducing signals, membrane channels, transporters and receptors are expected to exhibit intrinsic conformational dynamics. It is therefore of great interest and importance to understand the various properties of conformational dynamics acquired by these proteins, for example, the relative population of states, exchange rate, conformations of multiple states, and how small molecule ligands modulate the conformational exchange. Because small molecule binding to membrane proteins can be weak and/or dynamic, structural characterization of these effects is very challenging. This review describes several NMR studies of membrane protein dynamics, ligand-induced conformational rearrangements, and the effect of ligand binding on the equilibrium of conformational exchange. The functional significance of the observed phenomena is discussed.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Regulación Alostérica , Sitios de Unión , Ligandos , Modelos Moleculares , Unión Proteica , Conformación Proteica
5.
Curr Opin Struct Biol ; 23(4): 547-54, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23628285

RESUMEN

Membrane channels, transporters and receptors constitute essential means for cells to maintain homeostasis and communicate with the surroundings. Investigation of their molecular architecture and the dynamic process of transporting substrate or transmitting signals across the membrane barrier has been one of the frontiers in biomedical research. The past decade has seen numerous successes in the use of X-ray or electron crystallography in determining atomic-resolution structures of membrane proteins, and in some cases, even snapshots of different physiological states of the same protein have been obtained. But there are also many cases in which long-standing efforts to crystallize proteins have yet to succeed. Therefore we have practical needs for developing complementary biophysical tools such as NMR spectroscopy and electron microscopy for tackling these systems. This paper provides a number of key examples where the utility of solution NMR was pivotal in providing structural and functional information on ion channels and transporters.


Asunto(s)
Canales Iónicos/ultraestructura , Bombas Iónicas/ultraestructura , Proteínas Mitocondriales/ultraestructura , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas de la Matriz Viral/ultraestructura , Cristalografía por Rayos X , Canales Iónicos/metabolismo , Transporte Iónico , Proteínas Mitocondriales/metabolismo , Transducción de Señal , Proteína Desacopladora 1 , Proteínas de la Matriz Viral/metabolismo
6.
Structure ; 19(11): 1655-63, 2011 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-22078564

RESUMEN

The M2 channel of influenza A is a target of the adamantane family antiviral drugs. Two different drug-binding sites have been reported: one inside the pore, and the other is a lipid-facing pocket. A previous study showed that a chimera of M2 variants from influenza A and B that contains only the pore-binding site is sensitive to amantadine inhibition, suggesting that the primary site of inhibition is inside the pore. To obtain atomic details of channel-drug interaction, we determined the structures of the chimeric channel with and without rimantadine. Inside the channel and near the N-terminal end, methyl groups of Val27 and Ala30 from four subunits form a hydrophobic pocket around the adamantane, and the drug amino group appears to be in polar contact with the backbone oxygen of Ala30. The structures also reveal differences between the drug-bound and -unbound states of the channel that can explain drug resistance.


Asunto(s)
Antivirales/química , Virus de la Influenza A , Rimantadina/química , Proteínas Virales de Fusión/química , Secuencias de Aminoácidos , Sitios de Unión , Liposomas/química , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Virales de Fusión/antagonistas & inhibidores , Proteínas de la Matriz Viral/antagonistas & inhibidores , Proteínas de la Matriz Viral/química
7.
Protein Sci ; 16(9): 1977-83, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17766390

RESUMEN

Human phospholamban (PLN), a 30 kDa homopentamer in the sarcoplasmic reticulum (SR) membrane, controls the magnitude of heart muscle contraction and relaxation by regulating the calcium pumping activity of the SR Ca(2+)-ATPase (SERCA). When PLN is not phosphorylated, it binds and inhibits SERCA. Phosphorylation of PLN at S16 or T17 releases such inhibitory effect. It remains a matter of debate whether phosphorylation perturbs the structure of PLN, which in turn affects its interaction with SERCA. Here we examine by NMR spectroscopy the structure and dynamics of PLN pentamer with a physiologically relevant, phosphorylation-mimicking mutation, S16E. Based on extensive NMR data, including NOEs, dipolar couplings, and solvent exchange of backbone amides, we conclude that the phosphorylation-mimicking mutation does not perturb the pentamer structure. However, (15)N R(1) and R(2) relaxation rates and (15)N((1)H) NOEs suggest subtle differences in the dynamics of the extramembrane portion of the protein.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Sustitución de Aminoácidos , Proteínas de Unión al Calcio/genética , Humanos , Peso Molecular , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Serina/metabolismo , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 102(31): 10870-5, 2005 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-16043693

RESUMEN

Contraction and relaxation of heart muscle cells is regulated by cycling of calcium between cytoplasm and sarcoplasmic reticulum. Human phospholamban (PLN), expressed in the sarcoplasmic reticulum membrane as a 30-kDa homopentamer, controls cellular calcium levels by a mechanism that depends on its phosphorylation. Since PLN was discovered approximately 30 years ago, extensive studies have aimed to explain how it influences calcium pumps and to determine whether it acts as an ion channel. We have determined by solution NMR methods the atomic resolution structure of an unphosphorylated PLN pentamer in dodecylphosphocholine micelles. The unusual bellflower-like assembly is held together by leucine/isoleucine zipper motifs along the membrane-spanning helices. The structure reveals a channel-forming architecture that could allow passage of small ions. The central pore gradually widens toward the cytoplasmic end as the transmembrane helices twist around each other and bend outward. The dynamic N-terminal amphipathic helices point away from the membrane, perhaps facilitating recognition and inhibition of the calcium pump.


Asunto(s)
Proteínas de Unión al Calcio/química , Secuencia de Aminoácidos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , Humanos , Técnicas In Vitro , Canales Iónicos/química , Canales Iónicos/genética , Canales Iónicos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico
9.
Methods Enzymol ; 394: 321-34, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15808226

RESUMEN

The first steps toward undertaking an NMR structural study of a new protein is very often to purify the protein and then to acquire an HSQC or TROSY NMR spectrum, the quality of which is used to assess the feasibility of an NMR-based structural determination. Relatively few integral membrane proteins (IMPs) have been subjected even to this very preliminary stage of NMR analysis. Here, NMR feasibility testing methods are outlined that are tailored for hexahistidine-tagged IMPs that have been expressed in Escherichia coli. Generally applicable protocols are presented for expression testing, purification, and NMR sample preparation. A 2D TROSY pulse sequence that has been optimized for use with IMPs is also presented.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Detergentes , Deuterio , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Proteínas de Escherichia coli/química
10.
J Am Chem Soc ; 126(16): 5048-9, 2004 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-15099070

RESUMEN

Backbone nuclear magnetic resonance (NMR) assignments were achieved for diacylglycerol kinase (DAGK) in detergent micelles. DAGK is a homotrimeric integral membrane protein comprised of 121 residue subunits, each having three transmembrane segments. Assignments were made using TROSY-based pulse sequences. DAGK was found to be an almost exclusively helical protein. This work points to the feasibility of both solving the structure of DAGK using solution NMR methods and using NMR as a primary tool in structural studies of other helical integral membrane proteins of similar size and complexity.


Asunto(s)
Diacilglicerol Quinasa/química , Proteínas de la Membrana/química , Amidas/química , Secuencia de Aminoácidos , Escherichia coli , Datos de Secuencia Molecular , Peso Molecular , Resonancia Magnética Nuclear Biomolecular , Pliegue de Proteína , Estructura Secundaria de Proteína
11.
Biochemistry ; 41(42): 12876-82, 2002 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-12379131

RESUMEN

Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary structure of DAGK's N-terminus up through the loop following the first transmembrane domain were probed by NMR spectroscopy. Secondary structure was mapped by measuring 13C NMR chemical shifts. Residue-to-residue topology was probed by measuring 19F NMR relaxation rates for site-specifically labeled samples in the presence and absence of polar and hydrophobic paramagnetic probes. Most of DAGK's N-terminal cytoplasmic and first transmembrane segments are alpha-helical. The first and second transmembrane helices are separated by a short loop from residues 48 to 52. The first transmembrane segment extends from residues 32 to 48. Most of the N-terminal cytoplasmic domain lies near the interface but does not extend deeply into the membrane. Finally, catalytic activities measured for the single cysteine mutants before and after chemical labeling suggest that the N-terminal cytoplasmic domain likely contains a number of critical active site residues. The results, therefore, suggest that DAGK's active site lies very near to the water/bilayer interface.


Asunto(s)
Diacilglicerol Quinasa/química , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Reactivos de Enlaces Cruzados/química , Cisteína/genética , Diacilglicerol Quinasa/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Flúor , Gadolinio DTPA/química , Glucósidos/química , Micelas , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/genética , Fosfatidilcolinas/química , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...