Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 1463-1471, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222500

RESUMEN

Salicylideneanilines (SAs) are photochromic compounds that undergo enol-keto photoisomerization in the solid state. Research over the past 60 years has revealed empirically that SAs with steric and planar conformations tend to be photochromic and nonphotochromic, respectively. However, increasing counterexamples in the recent literature raise questions about the nature of the relationship between structure and photochromism in SA crystals and whether the photochromism of SA crystals is predictable. This study is the first to construct a data set on SA crystals and conduct a comprehensive analysis to investigate the relationship between molecular and crystal structures and photochromism. A data mining approach revealed that the dihedral angle is the most dominant structural parameter for photochromism, followed by the Hirshfeld surface volume. SAs with neutral bulky hydrocarbon groups, such as the tert-butyl group, tend to be photochromic because such SAs have steric conformation and a loosely packed structure. In contrast, SAs with fluorine, pyridine, and pyrazine are less likely to be photochromic due to their planar conformation and densely packed structures. The photochromism of the SA crystals in our data set was predicted with high accuracy (>85%) using machine learning. The results of this study provide a useful reference for designing SA crystals with desired photochromic properties.

2.
RSC Adv ; 13(46): 32363-32370, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37928850

RESUMEN

We report the facile synthesis of telechelic poly(phenylene sulfide) (PPS) derivatives bearing functional groups at both termini. α,ω-Dihalogenated dimethyl-substituted PPS were obtained in high yield with a high degree of end-functionalization by using soluble poly(2,6-dimethyl-1,4-phenylenesulfide) (PMPS) and 4,4'-dihalogenated diphenyl disulfide (X-DPS, X = Cl, Br) as a precursor and an end-capping agent, respectively. Further end-functionalization is achieved through cross-coupling reactions; particularly, the Kumada-Tamao cross-coupling reaction of bromo-terminated telechelic PMPS and a vinylated Grignard reagent afforded end-vinylated PMPS with thermosetting properties. This synthetic approach can be applied to the preparation of various aromatic telechelic polymers with the desired structures and functionalities.

3.
Chem Rev ; 123(19): 11336-11391, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695670

RESUMEN

Persistent radicals can hold their unpaired electrons even under conditions where they accumulate, leading to the unique characteristics of radical ensembles with open-shell structures and their molecular properties, such as magneticity, radical trapping, catalysis, charge storage, and electrical conductivity. The molecules also display fast, reversible redox reactions, which have attracted particular attention for energy conversion and storage devices. This paper reviews the electrochemical aspects of persistent radicals and the corresponding macromolecules, radical polymers. Radical structures and their redox reactions are introduced, focusing on redox potentials, bistability, and kinetic constants for electrode reactions and electron self-exchange reactions. Unique charge transport and storage properties are also observed with the accumulated form of redox sites in radical polymers. The radical molecules have potential electrochemical applications, including in rechargeable batteries, redox flow cells, photovoltaics, diodes, and transistors, and in catalysts, which are reviewed in the last part of this paper.

4.
RSC Adv ; 13(21): 14651-14659, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37197684

RESUMEN

Data-driven optimal structure exploration has become a hot topic in materials for energy-related devices. However, this method is still challenging due to the insufficient prediction accuracy of material properties and large exploration space for candidate structures. We propose a data trend analysis system for materials using quantum-inspired annealing. Structure-property relationships are learned by a hybrid decision tree and quadratic regression algorithm. Then, ideal solutions to maximize the property are explored by a Fujitsu Digital Annealer, which is unique hardware that can quickly extract promising solutions from the ample search space. The system's validity is investigated with an experimental study examining solid polymer electrolytes as potential components for solid-state lithium-ion batteries. A new trithiocarbonate polymer electrolyte offers a conductivity of 10-6 S cm-1 at room temperature, even though it is in a glassy state. Molecular design through data science will enable accelerated exploration of functional materials for energy-related devices.

5.
Angew Chem Int Ed Engl ; 62(30): e202304366, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37129419

RESUMEN

A proof-of-concept study was conducted on an all-solid-state rechargeable air battery (SSAB) using redox-active 2,5-dihydroxy-1,4-benzoquinone (DHBQ) and its polymer (PDBM) and a proton-conductive polymer (Nafion). DHBQ functioned well in the redox reaction with the solid Nafion ionomer at 0.47 and 0.57 V vs. RHE, similar to that in acid aqueous solution. The resulting air battery exhibited an open circuit voltage of 0.80 V and a discharge capacity of 29.7 mAh gDHBQ -1 at a constant current density (1 mA cm-2 ). With PDBM, the discharge capacity was much higher, 176.1 mAh gPDBM -1 , because of the improved utilization of the redox-active moieties. In the rate characteristics of the SSAB-PDBM, the coulombic efficiency was 84 % at 4 C, which decreased to 66 % at 101 C. In a charge/discharge cycle test, the capacity remaining after 30 cycles was 44 %, which was able to be significantly improved, to 78 %, by tuning the Nafion composition in the negative electrode.

6.
Sci Rep ; 13(1): 5711, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029257

RESUMEN

Redox targeting reaction is an emerging idea for boosting the energy density of redox-flow batteries: mobile redox mediators transport electrical charges in the cells, whereas large-density electrode-active materials are fixed in tanks. This study reports 4 V-class organic polymer mediators using thianthrene derivatives as redox units. The higher potentials than conventional organic mediators (up to 3.8 V) enable charging LiMn2O4 as an inorganic cathode offering a large theoretical volumetric capacity of 500 Ah/L. Soluble or nanoparticle polymer design is beneficial for suppressing crossover reactions (ca. 3% after 300 h), simultaneously contributing to mediation reactions. The successful mediation cycles observed by repeated charging/discharging steps indicate the future capability of designing particle-based redox targeting systems with porous separators, benefiting from higher energy density and lower cost.

7.
Macromol Rapid Commun ; 43(20): e2200385, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35759445

RESUMEN

Automated molecule design by computers is an essential topic in materials informatics. Still, generating practical structures is not easy because of the difficulty in treating material stability, synthetic difficulty, mechanical properties, and other miscellaneous parameters, often leading to the generation of junk molecules. The problem is tackled by introducing supervised/unsupervised machine learning and quantum-inspired annealing. This autonomous molecular design system can help experimental researchers discover practical materials more efficiently. Like the human design process, new molecules are explored based on knowledge of existing compounds. A new solid-state polymer electrolyte for lithium-ion batteries is designed and synthesized, giving a promising room temperature conductivity of 10-5 S cm-1 with reasonable thermal, chemical, and mechanical properties.


Asunto(s)
Litio , Polímeros , Humanos , Litio/química , Suministros de Energía Eléctrica , Electrólitos/química , Iones
8.
RSC Adv ; 13(1): 547-557, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36605670

RESUMEN

Charge-transport kinetics of redox-active polymers is essential in designing electrochemical devices. We formulate the homogeneous and heterogeneous charge-transfer processes of the redox-active polymers dissolved in electrolytes. The critical electrochemical parameters, the apparent diffusion coefficient of charge transport (D app) and standard electrochemical reaction constant (k 0), are estimated by considering the physical diffusion D phys of polymer chains (D app, k 0 ∝ D phys). The models are validated with previously reported compounds and newly synthesized hydrophilic macromolecules. Solution-type cells are examined to analyze their primary responses from the electrochemical viewpoints.

9.
ACS Polym Au ; 2(6): 458-466, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36855676

RESUMEN

High-refractive-index polymers (HRIPs) are attractive materials for the development of optical devices with high performances. However, because practical components and structures for HRIPs are limited from the viewpoint of synthetic techniques, it has proved difficult using traditional strategies to enhance the refractive index (RI) of HRIPs to more than a certain degree (over 1.8) while maintaining their visible transparency. Here, we found that poly(phenylene sulfide) (PPS) derivatives featuring both methylthio and hydroxy groups can simultaneously exhibit balanced properties of an ultrahigh RI of n D = 1.85 and Abbe number of νD = 20 owing to the synergistic effect of high molar refraction and dense intermolecular hydrogen bonds (H-bonds). This brand new strategy is anticipated to contribute to the development of HRIPs displaying ultrahigh RI with adequate Abbe numbers beyond the empirical n D-νD threshold, which has not been achieved to date.

10.
Mater Horiz ; 8(3): 803-829, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34821316

RESUMEN

Increasing demand for portable and flexible electronic devices requires seamless integration of the energy storage system with other electronic components. This ever-growing area has urged on the rapid development of new electroactive materials that not only possess excellent electrochemical properties but hold capabilities to be fabricated to desired shapes. Ideally, these new materials should have minimal impact on the environment at the end of their life. Nitroxide radical polymers (NRPs) with their remarkable electrochemical and physical properties stand out from diverse organic redox systems and have attracted tremendous attention for their identified applications in plastic energy storage and organic devices. In this review, we present a comprehensive summary of NRPs with respect to the fundamental electrochemical properties, design principles and fabrication methods for different types of energy storage systems and organic electronic devices. While highlighting some exciting progress on charge transfer theory and emerging applications, we end up with a discussion on the challenges and opportunities regarding the future directions of this field.


Asunto(s)
Plásticos , Polímeros , Electrónica , Óxidos de Nitrógeno
11.
Macromol Rapid Commun ; 42(19): e2100374, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34347338

RESUMEN

A newly designed radical polymer with a polynorbornene backbone and unsaturated derivative of tetramethylpyrrolidine 1-oxyl (PROXYL) as pendant groups displays reversible redox at 3.75 V (vs Li/Li+ ). The robust polymer design enables the high voltage while maintaining a promising cyclability (over 1000 cycles). The polymer is also beneficial as an additive to the regular lithium iron phosphate electrodes, where the quickly responding organic material facilitates the charging reactions catalytically.


Asunto(s)
Litio , Polímeros , Suministros de Energía Eléctrica , Electrodos , Norbornanos
12.
ACS Omega ; 6(22): 14566-14574, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34124480

RESUMEN

We report a deep generative model for regression tasks in materials informatics. The model is introduced as a component of a data imputer and predicts more than 20 diverse experimental properties of organic molecules. The imputer is designed to predict material properties by "imagining" the missing data in the database, enabling the use of incomplete material data. Even removing 60% of the data does not diminish the prediction accuracy in a model task. Moreover, the model excels at extrapolation prediction, where target values of the test data are out of the range of the training data. Such an extrapolation has been regarded as an essential technique for exploring novel materials but has hardly been studied to date due to its difficulty. We demonstrate that the prediction performance can be improved by >30% by using the imputer compared with traditional linear regression and boosting models. The benefit becomes especially pronounced with few records for an experimental property (<100 cases) when prediction would be difficult by conventional methods. The presented approach can be used to more efficiently explore functional materials and break through previous performance limits.

13.
Phys Chem Chem Phys ; 23(17): 10205-10217, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33481976

RESUMEN

In this study we investigate the reversibility of the reduction process of three TEMPO derivatives - TEMPOL, 4-cyano-TEMPO, and 4-oxo-TEMPO. The [C2mim][BF4] and [C4mpyr][OTf] ionic liquids (ILs) were used to perform cyclic voltammetry (CV) to analyse the redox potentials of the TEMPO derivatives. The former was previously shown to quench the aminoxy anion of TEMPO through a proton transfer reaction with the cation, whereas the latter supported the irreversibility of the TEMPO reduction process. In CV results on TEMPO derivatives, it was shown that [C4mpyr][OTf] could allow for a high degree of reversibility in the reduction of 4-cyano-TEMPO and a moderate degree of reversibility in the reduction of TEMPOL. In comparison, reduction of 4-cyano-TEMPO was predominantly irreversible in [C2mim][BF4], whilst TEMPOL showed complete irreversibility. 4-Oxo-TEMPO did not show any notable reduction reversibility in either IL tested. Reduction potentials showed little variation between the derivatives and 0.2 V variation between the ILs, with the most negative reduction potential being observed at -1.43 V vs. Fc/Fc+ for TEMPOL in [C4mpyr][OTf]. To explain the varying degrees of reversibility of the reduction process, four types of side reactions involving proton transfer to the aminoxy anion were studied using highly correlated quantum chemical methods. Proton transfer from the IL cation was shown to have the ability to quench all three aminoxy anions depending on the IL used. On average, TEMPOL was shown to be the most susceptible to proton transfer from the IL cation, having an average Gibbs free energy (GFE) of 10.5 kJ mol-1 more negative than that of 4-cyano-TEMPO, which was shown to have the highest GFE of proton transfer. Side reactions between water and aminoxy anions were also seen to have the potential to contribute to degradation of the aminoxy anions tested, with 4-oxo-TEMPO being shown to be the most reactive to degradation with water with a GFE of -12.6 kJ mol-1. 4-Oxo-TEMPO was found to be highly susceptible to self-quenching by its aminoxy anion and radical form with highly negative proton transfer GFEs of -47.9 kJ mol-1 and -57.7 kJ mol-1, respectively. Overall, 4-cyano-TEMPO is recommended as being the most stable of the aminoxy anions tested with TEMPOL, thus providing a viable alternative to improve solubility should the IL be tuned to maximize its stability.

14.
Macromol Rapid Commun ; 42(4): e2000607, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33458885

RESUMEN

A poly(ethylene sulfide) backbone is introduced as the main chain of a radical polymer. Anionic ring-opening polymerization of an episulfide monomer substituted with 2,2,6,6tetramethylpiperidin1oxyl (TEMPO), a robust nitroxide radical, yields the corresponding polythioether. Compared to the traditional poly(ethylene oxide) backbone, the new polymer shows a lower glass transition temperature (-10 °C), and about threefold higher solid-state ionic conductivity. The polythioether is also shown to improve the charge/discharge properties of a cathode in solid-state lithium-ion batteries.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Óxidos N-Cíclicos , Polietilenglicoles , Sulfuros
15.
ChemSusChem ; 13(9): 2280-2285, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32267605

RESUMEN

Organic materials receive increasing attention as environmentally benign and sustainable electrode-active materials. We present a conducting redox polymer (CRP) based on poly(3,4-ethylenedioxythiophene) with naphthoquinone pendant group, which is formed from a stable suspension of a trimeric precursor and an oxoammonium cation as oxidant. This suspension allows us to easily coat the polymer onto a current collector, opening up use of roll-to-roll processing or ink-jet printing for electrode preparation. The CRP showed a full capacity of 76 mAh g-1 even at a high C rate of 100 C in acidic aqueous electrolyte. These properties make the CRP a promising candidate as anode-active material; a polymer-air secondary battery was fabricated with the CRP as anode, a conventional Pt/C catalyst as cathode, and sulfuric acid aqueous solution as electrolyte. This battery yielded a discharge voltage of 0.50 V and showed good cycling stability with 97 % capacity retention after 100 cycles and high rate capabilities up to 20 C.

16.
Chem Commun (Camb) ; 56(29): 4055-4058, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32211741

RESUMEN

A rechargeable acidic polymer-air battery was firstly fabricated with poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene) (PDBM) as the anode, the conventional Pt/C cathode catalyst, and acidic aqueous electrolyte (pH 1). This battery yielded a high discharging capacity of 349 mA h gpolymer-1 with a long-lifetime of >500 cycles and high rate capabilities (up to 10C).

17.
J Am Chem Soc ; 142(7): 3301-3305, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31939282

RESUMEN

It has long remained challenging to predict the properties of complex chemical systems, such as polymer-based materials and their composites. We have constructed the largest database of lithium-conducting solid polymer electrolytes (104 entries) and employed a transfer-learned graph neural network to accurately predict their conductivity (mean absolute error of less than 1 on a logarithmic scale). The bias-free prediction by the network helped us to find superionic conductors composed of charge-transfer complexes of aromatic polymers (ionic conductivity of around 10-3 S/cm at room temperature). The glassy design was contrary to the traditional concept of rubbery polymer electrolytes, but it was found to be appropriate to achieve fast, decoupled motion of ionic species from polymer chains and to enhance thermal and mechanical stability. The unbiased suggestions generated by machine learning models can help researches to discover unexpected chemical phenomena, which could also induce a paradigm shift of energy-related functional materials.

18.
Commun Chem ; 3(1): 138, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36703377

RESUMEN

Proton exchange membrane fuel cells (PEMFCs) are promising clean energy conversion devices in residential, transportation, and portable applications. Currently, a high-pressure tank is the state-of-the-art mode of hydrogen storage; however, the energy cost, safety, and portability (or volumetric hydrogen storage capacity) presents a major barrier to the widespread dissemination of PEMFCs. Here we show an 'all-polymer type' rechargeable PEMFC (RCFC) that contains a hydrogen-storable polymer (HSP), which is a solid-state organic hydride, as the hydrogen storage media. Use of a gas impermeable SPP-QP (a polyphenylene-based PEM) enhances the operable time, reaching up to ca. 10.2 s mgHSP-1, which is more than a factor of two longer than that (3.90 s mgHSP-1) for a Nafion NRE-212 membrane cell. The RCFCs are cycleable, at least up to 50 cycles. The features of this RCFC system, including safety, ease of handling, and light weight, suggest applications in mobile, light-weight hydrogen-based energy devices.

19.
ChemSusChem ; 13(9): 2443-2448, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31883311

RESUMEN

Metal-free and totally organic based batteries were fabricated from functional polyethers. Aliphatic polyethers, in which 2,2,6,6-tetramethylpiperidin-1-oxyl and viologen were introduced with high density, were used as the cathode and anode active materials, respectively. By stacking nanosheets of the polymers and an imidazolium-substituted polyether as the electrolyte, a solid-state cell only 2 µm thick was made. The anion-type rocking-chair cell showed reversible charge/discharge even at a high rate of 5 C without adding any solvents or plasticizers. Although the unsealed cell was measured under ambient conditions, no significant side reactions (including self-discharging and capacity decay) occurred, whereas conventional electrodes are sensitive to air and water in the charged state. The intrinsic plasticity of the polyethers is also compatible with making free-form, 3D-printable batteries.

20.
Macromol Rapid Commun ; 41(1): e1900399, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31631438

RESUMEN

Poly(glycidyl ether)s having trifluoromethanesulfonylimide or imidazolium pendant groups are synthesized by thiol-ene reactions. The precise synthesis of a precursor polymer, poly(allyl glycidyl ether), and the following click reactions enable the facile preparation of the polyelectrolytes with the controlled length of main and side chains. The low glass transition temperature (<<0 °C) of the polyethers is beneficial to provide a conductivity as high as 10-6 S cm-1 at room temperature, without compositing any additives. The synthetic approach has advantages of clearly comparing the structural effects of the introduced functional groups and facilely preparing the comprehensive types of polymers.


Asunto(s)
Compuestos Epoxi/química , Compuestos de Sulfhidrilo/química , Química Clic , Compuestos Epoxi/síntesis química , Iones/química , Temperatura de Transición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA