Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nat Commun ; 15(1): 5570, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956053

RESUMEN

Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors. Analyzing the acetylome after CM-444 and CM-1758 treatment reveals modulation of non-histone proteins involved in the enhancer-promoter chromatin regulatory complex, including bromodomain proteins. This acetylation is essential for enhancing the expression of key transcription factors directly involved in the differentiation therapy induced by CM-444/CM-1758 in acute myeloid leukemia. In summary, these compounds may represent effective differentiation-based therapeutic agents across acute myeloid leukemia subtypes with a potential mechanism for the treatment of acute myeloid leukemia.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Inhibidores de Histona Desacetilasas , Leucemia Mieloide Aguda , Humanos , Diferenciación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Línea Celular Tumoral , Acetilación/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Animales
2.
Thromb Haemost ; 122(8): 1314-1325, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35114692

RESUMEN

BACKGROUND: Intracranial hemorrhage (ICH) is one of the major devastating complications of anticoagulation. Matrix metalloproteinase (MMP) inhibition has been proposed as a novel pharmacological approach for ICH treatment. OBJECTIVES: We evaluated the effects of CM-352 (MMP-fibrinolysis inhibitor) in an experimental ICH model associated with oral anticoagulants as compared with clinically used prothrombin complex concentrate (PCC). METHODS: ICH was induced by collagenase injection into the striatum of wild type (C57BL/6J) anticoagulated mice (warfarin or rivaroxaban) and Mmp10 -/- mice. Hematoma volume and neurological deficits were measured 24 hours later by diaminobenzidine staining and different behavioral tests. Circulating plasminogen activator inhibitor-1 (PAI-1) activity and interleukin-6 (IL-6) were measured in plasma samples and local inflammation was assessed by neutrophil infiltration. Finally, fibrinolytic effects of MMP-10 and rivaroxaban were evaluated by thromboelastometry and thrombin-activatable fibrinolysis inhibitor (TAFI) activation assays. RESULTS: Only PCC reduced hemorrhage volume and improved functional outcome in warfarin-ICH, but both PCC and CM-352 treatments diminished hemorrhage volume (46%, p < 0.01 and 64%, p < 0.001, respectively) and ameliorated functional outcome in rivaroxaban-ICH. We further demonstrated that CM-352, but not PCC, decreased neutrophil infiltration in the hemorrhage area at 24 hours. The effect of CM-352 could be related to MMP-10 inhibition since Mmp10 -/- mice showed lower hemorrhage volume, better neurological score, reduced IL-6 levels and neutrophil infiltration, and increased PAI-1 after experimental ICH. Finally, we found that CM-352 reduced MMP-10 and rivaroxaban-related fibrinolytic effects in thromboelastometry and TAFI activation. CONCLUSION: CM-352 treatment, by diminishing MMPs and rivaroxaban-associated fibrinolytic effects, might be a novel antihemorrhagic strategy for rivaroxaban-associated ICH.


Asunto(s)
Anticoagulantes , Benzamidas , Ácidos Hidroxámicos , Hemorragias Intracraneales , Warfarina , Animales , Anticoagulantes/efectos adversos , Benzamidas/uso terapéutico , Factores de Coagulación Sanguínea/uso terapéutico , Hemorragia Cerebral/tratamiento farmacológico , Modelos Animales de Enfermedad , Ácidos Hidroxámicos/uso terapéutico , Interleucina-6 , Hemorragias Intracraneales/inducido químicamente , Hemorragias Intracraneales/tratamiento farmacológico , Metaloproteinasa 10 de la Matriz , Ratones , Ratones Endogámicos C57BL , Inhibidor 1 de Activador Plasminogénico , Rivaroxabán/efectos adversos , Warfarina/efectos adversos
3.
Mol Ther Nucleic Acids ; 25: 207-219, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34458006

RESUMEN

Variegate porphyria (VP) results from haploinsufficiency of protoporphyrinogen oxidase (PPOX), the seventh enzyme in the heme synthesis pathway. There is no VP model that recapitulates the clinical manifestations of acute attacks. Combined administrations of 2-allyl-2-isopropylacetamide and rifampicin in rabbits halved hepatic PPOX activity, resulting in increased accumulation of a potentially neurotoxic heme precursor, lipid peroxidation, inflammation, and hepatocyte cytoplasmic stress. Rabbits also showed hypertension, motor impairment, reduced activity of critical mitochondrial hemoprotein functions, and altered glucose homeostasis. Hemin treatment only resulted in a slight drop in heme precursor accumulation but further increased hepatic heme catabolism, inflammation, and cytoplasmic stress. Hemin replenishment did protect against hypertension, but it failed to restore action potentials in the sciatic nerve or glucose homeostasis. Systemic porphobilinogen deaminase (PBGD) mRNA administration increased hepatic PBGD activity, the third enzyme of the pathway, and rapidly normalized serum and urine porphyrin precursor levels. All features studied were improved, including those related to critical hemoprotein functions. In conclusion, the VP model recapitulates the biochemical characteristics and some clinical manifestations associated with severe acute attacks in humans. Systemic PBGD mRNA provided successful protection against the acute attack, indicating that PBGD, and not PPOX, was the critical enzyme for hepatic heme synthesis in VP rabbits.

4.
Cancers (Basel) ; 13(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34359605

RESUMEN

Zebrafish embryo tumor transplant models are widely utilized in cancer research. Compared with traditional murine models, the small size and transparency of zebrafish embryos combined with large clutch sizes that increase statistical power and cheap husbandry make them a cost-effective and versatile tool for in vivo drug discovery. However, the lack of a comprehensive analysis of key factors impacting the successful use of these models impedes the establishment of basic guidelines for systematic screening campaigns. Thus, we explored the following crucial factors: (i) user-independent inclusion criteria, focusing on sample homogeneity; (ii) metric definition for data analysis; (iii) tumor engraftment criteria; (iv) image analysis versus quantification of human cancer cells using qPCR (RNA and gDNA); (v) tumor implantation sites; (vi) compound distribution (intratumoral administration versus alternative inoculation sites); and (vii) efficacy (intratumoral microinjection versus compound solution in media). Based on these analyses and corresponding assessments, we propose the first roadmap for systematic drug discovery screening in zebrafish xenograft cancer models using a melanoma cell line as a case study. This study aims to help the wider cancer research community to consider the adoption of this versatile model for cancer drug screening projects.

6.
Biomedicines ; 9(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671179

RESUMEN

(1) Background: The ability of cancer cells to evade the immune system is due in part to their capacity to induce and recruit T regulatory cells (Tregs) to the tumor microenvironment. Strategies proposed to improve antitumor immunity by depleting Tregs generally lack specificity and raise the possibility of autoimmunity. Therefore, we propose to control Tregs by their functional inactivation rather than depletion. Tregs are characterized by the expression of the Forkhead box protein 3 (FOXP3) transcription factor, which is considered their "master regulator". Its interaction with DNA is assisted primarily by its interaction with other proteins in the so-called "Foxp3 interactome", which elicits much of the characteristic Treg cell transcriptional signature. We speculated that the disruption of such a protein complex by using synthetic peptides able to bind Foxp3 might have an impact on the functionality of Treg cells and thus have a therapeutic potential in cancer treatment. (2) Methods: By using a phage-displayed peptide library, or short synthetic peptides encompassing Foxp3 fragments, or by studying the crystal structure of the Foxp3:NFAT complex, we have identified a series of peptides that are able to bind Foxp3 and inhibit Treg activity. (3) Results: We identified some peptides encompassing fragments of the leuzin zipper or the C terminal domain of Foxp3 with the capacity to inhibit Treg activity in vitro. The acetylation/amidation of linear peptides, head-to-tail cyclization, the incorporation of non-natural aminoacids, or the incorporation of cell-penetrating peptide motifs increased in some cases the Foxp3 binding capacity and Treg inhibitory activity of the identified peptides. Some of them have shown antitumoral activity in vivo. (4) Conclusions: Synthetic peptides constitute an alternative to inhibit Foxp3 protein-protein interactions intracellularly and impair Treg immunosuppressive activity. These peptides might be considered as potential hit compounds on the design of new immunotherapeutic approaches against cancer.

7.
J Med Chem ; 64(6): 3392-3426, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33661013

RESUMEN

Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC50 < 200 nM). Additionally, lysine methyltransferase G9a inhibitory activity is achieved (from a low nanomolar range) by introduction of a key lysine mimic group at the 7-position of the quinoline ring. The corresponding epigenetic functional cellular responses are observed: histone-3 acetylation, DNA hypomethylation, and decreased histone-3 methylation at lysine-9. These chemical probes, multitarget epigenetic inhibitors, were validated against the multiple myeloma cell line MM1.S, demonstrating promising in vitro activity of 12a (CM-444) with GI50 of 32 nM, an adequate therapeutic window (>1 log unit), and a suitable pharmacokinetic profile. In vivo, 12a achieved significant antitumor efficacy in a xenograft mouse model of human multiple myeloma.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Antígenos de Histocompatibilidad/metabolismo , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
8.
Nat Commun ; 12(1): 421, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462210

RESUMEN

Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD.


Asunto(s)
Antineoplásicos/farmacología , Enfermedades Óseas/tratamiento farmacológico , Metilación de ADN/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antineoplásicos/uso terapéutico , Enfermedades Óseas/diagnóstico , Enfermedades Óseas/genética , Enfermedades Óseas/patología , Médula Ósea/patología , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Femenino , Fémur/diagnóstico por imagen , Fémur/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Persona de Mediana Edad , Mieloma Múltiple/complicaciones , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cancer Discov ; 11(5): 1268-1285, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33355179

RESUMEN

For millions of years, endogenous retroelements have remained transcriptionally silent within mammalian genomes by epigenetic mechanisms. Modern anticancer therapies targeting the epigenetic machinery awaken retroelement expression, inducing antiviral responses that eliminate tumors through mechanisms not completely understood. Here, we find that massive binding of epigenetically activated retroelements by RIG-I and MDA5 viral sensors promotes ATP hydrolysis and depletes intracellular energy, driving tumor killing independently of immune signaling. Energy depletion boosts compensatory ATP production by switching glycolysis to mitochondrial oxidative phosphorylation, thereby reversing the Warburg effect. However, hyperfunctional succinate dehydrogenase in mitochondrial electron transport chain generates excessive oxidative stress that unleashes RIP1-mediated necroptosis. To maintain ATP generation, hyperactive mitochondrial membrane blocks intrinsic apoptosis by increasing BCL2 dependency. Accordingly, drugs targeting BCL2 family proteins and epigenetic inhibitors yield synergistic responses in multiple cancer types. Thus, epigenetic therapy kills cancer cells by rewiring mitochondrial metabolism upon retroelement activation, which primes mitochondria to apoptosis by BH3-mimetics. SIGNIFICANCE: The state of viral mimicry induced by epigenetic therapies in cancer cells remodels mitochondrial metabolism and drives caspase-independent tumor cell death, which sensitizes to BCL2 inhibitor drugs. This novel mechanism underlies clinical efficacy of hypomethylating agents and venetoclax in acute myeloid leukemia, suggesting similar combination therapies for other incurable cancers.This article is highlighted in the In This Issue feature, p. 995.


Asunto(s)
Antineoplásicos/farmacología , Epigénesis Genética/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Humanos
10.
Eur J Med Chem ; 211: 113109, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33360802

RESUMEN

Activation of the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway occurs frequently in a wide range of human cancers and is a main driver of cell growth, proliferation, survival, and chemoresistance of cancer cells. Compounds targeting this pathway are under active development as anticancer therapeutics and some of them have reached advanced clinical trials or been approved by the FDA. Dual PI3K/mTOR inhibitors combine multiple therapeutic efficacies in a single molecule by inhibiting the pathway both upstream and downstream of AKT. Herein, we report our efforts on the exploration of novel small molecule macrocycles (MCXs) as dual PI3K/mTOR inhibitors. Macrocyclization is an attractive approach used in drug discovery, as the semi-rigid character of these structures could provide improved potency, selectivity and favorable pharmacokinetic properties. Importantly, this strategy allows access to new chemical space thus obtaining a better intellectual property position. A series of MCXs based on GSK-2126458, a known clinical PI3K/mTOR inhibitor is described. These molecules showed potent biochemical and cellular dual PI3K/mTOR inhibition, demonstrated strong antitumoral effects in human cancer cell lines, and displayed good drug-like properties. Among them, MCX 83 presented remarkable selectivity against a panel of 468 kinases, high in vitro metabolic stability, and favorable pharmacokinetic parameters without significant CYP450 and h-ERG binding inhibition. This profile qualified this compound as a suitable candidate for future in vivo PK-PD and efficacy studies in mouse cancer models.


Asunto(s)
Fosfatidilinositol 3-Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinolinas/uso terapéutico , Sulfonamidas/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridazinas , Quinolinas/farmacología , Sulfonamidas/farmacología
11.
Gut ; 70(2): 388-400, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32327527

RESUMEN

OBJECTIVE: Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. DESIGN: G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-ß1 (TGFß1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. RESULTS: G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGFß1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGFß1 fibrogenic responses in hHSC. TGFß1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. CONCLUSIONS: Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Células Estrelladas Hepáticas/metabolismo , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Cirrosis Hepática/etiología , Animales , Inmunoprecipitación de Cromatina , ADN (Citosina-5-)-Metiltransferasa 1/genética , Epigénesis Genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Antígenos de Histocompatibilidad/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Factor de Crecimiento Transformador beta1/metabolismo
12.
Hepatology ; 73(6): 2380-2396, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33222246

RESUMEN

BACKGROUND AND AIMS: Cholangiocarcinoma (CCA) is a devastating disease often detected at advanced stages when surgery cannot be performed. Conventional and targeted systemic therapies perform poorly, and therefore effective drugs are urgently needed. Different epigenetic modifications occur in CCA and contribute to malignancy. Targeting epigenetic mechanisms may thus open therapeutic opportunities. However, modifications such as DNA and histone methylation often coexist and cooperate in carcinogenesis. We tested the therapeutic efficacy and mechanism of action of a class of dual G9a histone-methyltransferase and DNA-methyltransferase 1 (DNMT1) inhibitors. APPROACH AND RESULTS: Expression of G9a, DNMT1, and their molecular adaptor, ubiquitin-like with PHD and RING finger domains-1 (UHRF1), was determined in human CCA. We evaluated the effect of individual and combined pharmacological inhibition of G9a and DNMT1 on CCA cell growth. Our lead G9a/DNMT1 inhibitor, CM272, was tested in human CCA cells, patient-derived tumoroids and xenograft, and a mouse model of cholangiocarcinogenesis with hepatocellular deletion of c-Jun-N-terminal-kinase (Jnk)-1/2 and diethyl-nitrosamine (DEN) plus CCl4 treatment (JnkΔhepa + DEN + CCl4 mice). We found an increased and correlative expression of G9a, DNMT1, and UHRF1 in CCAs. Cotreatment with independent pharmacological inhibitors G9a and DNMT1 synergistically inhibited CCA cell growth. CM272 markedly reduced CCA cell proliferation and synergized with Cisplatin and the ERBB-targeted inhibitor, Lapatinib. CM272 inhibited CCA tumoroids and xenograft growth and significantly antagonized CCA progression in JnkΔhepa + DEN + CCl4 mice without apparent toxicity. Mechanistically, CM272 reprogrammed the tumoral metabolic transcriptome and phenotype toward a differentiated and quiescent status. CONCLUSIONS: Dual targeting of G9a and DNMT1 with epigenetic small molecule inhibitors such as CM272 is a potential strategy to treat CCA and/or enhance the efficacy of other systemic therapies.


Asunto(s)
Neoplasias de los Conductos Biliares , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma , ADN (Citosina-5-)-Metiltransferasa 1 , Inhibidores Enzimáticos/farmacología , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina , Animales , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN/efectos de los fármacos , Metilación de ADN/fisiología , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad/metabolismo , Código de Histonas/efectos de los fármacos , Código de Histonas/fisiología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Resultado del Tratamiento , Ubiquitina-Proteína Ligasas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
Cancers (Basel) ; 12(12)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322158

RESUMEN

Liver fibrosis, a common hallmark of chronic liver disease (CLD), is characterized by the accumulation of extracellular matrix secreted by activated hepatic fibroblasts and stellate cells (HSC). Fibrogenesis involves multiple cellular and molecular processes and is intimately linked to chronic hepatic inflammation. Importantly, it has been shown to promote the loss of liver function and liver carcinogenesis. No effective therapies for liver fibrosis are currently available. We examined the anti-fibrogenic potential of a new drug (CM414) that simultaneously inhibits histone deacetylases (HDACs), more precisely HDAC1, 2, and 3 (Class I) and HDAC6 (Class II) and stimulates the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway activity through phosphodiesterase 5 (PDE5) inhibition, two mechanisms independently involved in liver fibrosis. To this end, we treated Mdr2-KO mice, a clinically relevant model of liver inflammation and fibrosis, with our dual HDAC/PDE5 inhibitor CM414. We observed a decrease in the expression of fibrogenic markers and collagen deposition, together with a marked reduction in inflammation. No signs of hepatic or systemic toxicity were recorded. Mechanistic studies in cultured human HSC and cholangiocytes (LX2 and H69 cell lines, respectively) demonstrated that CM414 inhibited pro-fibrogenic and inflammatory responses, including those triggered by transforming growth factor ß (TGFß). Our study supports the notion that simultaneous targeting of pro-inflammatory and fibrogenic mechanisms controlled by HDACs and PDE5 with a single molecule, such as CM414, can be a new disease-modifying strategy.

14.
J Med Chem ; 63(17): 9237-9257, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787085

RESUMEN

In vivo pharmacological inhibition of soluble epoxide hydrolase (sEH) reduces inflammatory diseases, including acute pancreatitis (AP). Adamantyl ureas are very potent sEH inhibitors, but the lipophilicity and metabolism of the adamantane group compromise their overall usefulness. Herein, we report that the replacement of a methylene unit of the adamantane group by an oxygen atom increases the solubility, permeability, and stability of three series of urea-based sEH inhibitors. Most of these oxa-analogues are nanomolar inhibitors of both the human and murine sEH. Molecular dynamics simulations rationalize the molecular basis for their activity and suggest that the presence of the oxygen atom on the adamantane scaffold results in active site rearrangements to establish a weak hydrogen bond. The 2-oxaadamantane 22, which has a good solubility, microsomal stability, and selectivity for sEH, was selected for further in vitro and in vivo studies in models of cerulein-induced AP. Both in prophylactic and treatment studies, 22 diminished the overexpression of inflammatory and endoplasmic reticulum stress markers induced by cerulein and reduced the pancreatic damage.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Epóxido Hidrolasas/antagonistas & inhibidores , Pancreatitis/tratamiento farmacológico , Urea/química , Enfermedad Aguda , Animales , Sitios de Unión , Dominio Catalítico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/metabolismo , Semivida , Humanos , Ratones , Microsomas/metabolismo , Simulación de Dinámica Molecular , Pancreatitis/inducido químicamente , Pancreatitis/patología , Ratas , Solubilidad , Relación Estructura-Actividad , Urea/metabolismo , Urea/farmacología , Urea/uso terapéutico
15.
J Comput Aided Mol Des ; 34(6): 659-669, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32060676

RESUMEN

In this work, we analyze the structure-activity relationships (SAR) of epigenetic inhibitors (lysine mimetics) against lysine methyltransferase (G9a or EHMT2) using a combined activity landscape, molecular docking and molecular dynamics approach. The study was based on a set of 251 G9a inhibitors with reported experimental activity. The activity landscape analysis rapidly led to the identification of activity cliffs, scaffolds hops and other active an inactive molecules with distinct SAR. Structure-based analysis of activity cliffs, scaffold hops and other selected active and inactive G9a inhibitors by means of docking followed by molecular dynamics simulations led to the identification of interactions with key residues involved in activity against G9a, for instance with ASP 1083, LEU 1086, ASP 1088, TYR 1154 and PHE 1158. The outcome of this work is expected to further advance the development of G9a inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Antígenos de Histocompatibilidad/química , N-Metiltransferasa de Histona-Lisina/química , Relación Estructura-Actividad , Antígenos de Histocompatibilidad/ultraestructura , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/ultraestructura , Humanos , Lisina/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica/efectos de los fármacos , Quinazolinas/química
16.
Cancer Lett ; 468: 1-13, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31593801

RESUMEN

Acute myeloid leukemia (AML) is an aggressive disease associated with very poor prognosis. Most patients are older than 60 years, and in this group only 5-15% of cases survive over 5 years. Therefore, it is urgent to develop more effective targeted therapies. Inactivation of protein phosphatase 2 A (PP2A) is a recurrent event in AML, and overexpression of its endogenous inhibitor SET is detected in ~30% of patients. The PP2A activating drug FTY720 has potent anti-leukemic effects; nevertheless, FTY720 induces cardiotoxicity at the anti-neoplastic dose. Here, we have developed a series of non-phosphorylable FTY720 analogues as a new therapeutic strategy for AML. Our results show that the lead compound CM-1231 re-activates PP2A by targeting SET-PP2A interaction, inhibiting cell proliferation and promoting apoptosis in AML cell lines and primary patient samples. Notably, CM-1231 did not induce cardiac toxicity, unlike FTY720, in zebrafish models, and reduced the invasion and aggressiveness of AML cells more than FTY720 in zebrafish xenograft models. In conclusion, CM-1231 is safer and more effective than FTY720; therefore, this compound could represent a novel and promising approach for treating AML patients with SET overexpression.


Asunto(s)
Cardiotoxicidad/prevención & control , Proteínas de Unión al ADN/metabolismo , Clorhidrato de Fingolimod/administración & dosificación , Chaperonas de Histonas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína Fosfatasa 2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad/etiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Clorhidrato de Fingolimod/análogos & derivados , Clorhidrato de Fingolimod/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Unión Proteica/efectos de los fármacos , Pruebas de Toxicidad Aguda , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
17.
Sci Rep ; 9(1): 15580, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666590

RESUMEN

Peripheral artery disease (PAD) is a major cause of acute and chronic illness, with extremely poor prognosis that remains underdiagnosed and undertreated. Trimethylamine-N-Oxide (TMAO), a gut derived metabolite, has been associated with atherosclerotic burden. We determined plasma levels of TMAO by mass spectrometry and evaluated their association with PAD severity and prognosis. 262 symptomatic PAD patients (mean age 70 years, 87% men) categorized in intermittent claudication (IC, n = 147) and critical limb ischemia (CLI, n = 115) were followed-up for a mean average of 4 years (min 1-max 102 months). TMAO levels were increased in CLI compared to IC (P < 0.001). Receiver operating characteristic (ROC) curves for severity (CLI) rendered a cutoff of 2.26 µmol/L for TMAO (62% sensitivity, 76% specificity). Patients with TMAO > 2.26 µmol/L exhibited higher risk of cardiovascular death (sub-hazard ratios ≥2, P < 0.05) that remained significant after adjustment for confounding factors. TMAO levels were associated to disease severity and CV-mortality in our cohort, suggesting an improvement of PAD prognosis with the measurement of TMAO. Overall, our results indicate that the intestinal bacterial function, together with the activity of key hepatic enzymes for TMA oxidation (FMO3) and renal function, should be considered when designing therapeutic strategies to control gut-derived metabolites in vascular patients.


Asunto(s)
Metilaminas/metabolismo , Enfermedad Arterial Periférica/metabolismo , Enfermedad Arterial Periférica/mortalidad , Anciano , Femenino , Humanos , Masculino , Enfermedad Arterial Periférica/diagnóstico , Pronóstico , Medición de Riesgo
18.
ACS Chem Neurosci ; 10(9): 4076-4101, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31441641

RESUMEN

Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).


Asunto(s)
3',5'-AMP Cíclico Fosfodiesterasas/antagonistas & inhibidores , Enfermedad de Alzheimer/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/metabolismo , Acetilación , Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/química , Estructura Molecular , Hidrolasas Diéster Fosfóricas/metabolismo , Relación Estructura-Actividad
19.
Front Aging Neurosci ; 11: 149, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31281249

RESUMEN

The discouraging results with therapies for Alzheimer's disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aß, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.

20.
Nat Med ; 25(7): 1073-1081, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31270502

RESUMEN

Bladder cancer is lethal in its advanced, muscle-invasive phase with very limited therapeutic advances1,2. Recent molecular characterization has defined new (epi)genetic drivers and potential targets for bladder cancer3,4. The immune checkpoint inhibitors have shown remarkable efficacy but only in a limited fraction of bladder cancer patients5-8. Here, we show that high G9a (EHMT2) expression is associated with poor clinical outcome in bladder cancer and that targeting G9a/DNMT methyltransferase activity with a novel inhibitor (CM-272) induces apoptosis and immunogenic cell death. Using an immunocompetent quadruple-knockout (PtenloxP/loxP; Trp53loxP/loxP; Rb1loxP/loxP; Rbl1-/-) transgenic mouse model of aggressive metastatic, muscle-invasive bladder cancer, we demonstrate that CM-272 + cisplatin treatment results in statistically significant regression of established tumors and metastases. The antitumor effect is significantly improved when CM-272 is combined with anti-programmed cell death ligand 1, even in the absence of cisplatin. These effects are associated with an endogenous antitumor immune response and immunogenic cell death with the conversion of a cold immune tumor into a hot tumor. Finally, increased G9a expression was associated with resistance to programmed cell death protein 1 inhibition in a cohort of patients with bladder cancer. In summary, these findings support new and promising opportunities for the treatment of bladder cancer using a combination of epigenetic inhibitors and immune checkpoint blockade.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Línea Celular Tumoral , Cisplatino/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Femenino , Antígenos de Histocompatibilidad , Humanos , Ratones , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...