Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 16(14): 11134-11150, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39068671

RESUMEN

BACKGROUND: Gain of function disturbances in nutrient sensing are likely the largest component in human age-related disease. Mammalian target of rapamycin complex 1 (mTORC1) activity affects health span and longevity. The drugs ketamine and rapamycin are effective against chronic pain and depression, and both affect mTORC1 activity. Our objective was to measure phosphorylated p70S6K, a marker for mTORC1 activity, in individuals with psychiatric disease to determine whether phosphorylated p70S6K could predict medication response. METHODS: Twenty-seven females provided blood samples in which p70S6K and phosphorylated p70S6K were analyzed. Chart review gathered biometric measurements, clinical phenotypes, and medication response. Questionnaires assessed anxiety, depression, autism traits, and mitochondrial dysfunction, to determine neuropsychiatric disease profiles. Univariate and multivariate statistical analyses were used to identify predictors of medication response. RESULTS: mTORC1 activity correlated highly with both classical biometrics (height, macrocephaly, pupil distance) and specific neuropsychiatric disease profiles (anxiety and autism). Across all cases, phosphorylated p70S6K was the best predictor for ketamine response, and also the best predictor for rapamycin response in a single instance. CONCLUSIONS: The data illustrate the importance of mTORC1 activity in both observable body structure and medication response. This report suggests that a simple assay may allow cost-effective prediction of medication response.


Asunto(s)
Ketamina , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas Quinasas S6 Ribosómicas 70-kDa , Humanos , Femenino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Persona de Mediana Edad , Ketamina/farmacología , Adulto , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Fosforilación , Trastornos Mentales/metabolismo , Sirolimus/farmacología , Sirolimus/uso terapéutico , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Ansiedad/metabolismo , Adulto Joven , Anciano
2.
bioRxiv ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38712089

RESUMEN

Since its first description in 1906 by Dr. Alois Alzheimer, Alzheimer's disease (AD) has been the most common type of dementia. Initially thought to be caused by age-associated accumulation of plaques, in recent years, research has increasingly associated AD with lysosomal storage and metabolic disorders, and the explanation of its pathogenesis has shifted from amyloid and tau accumulation to oxidative stress and impaired lipid and glucose metabolism aggravated by hypoxic conditions. However, the underlying mechanisms linking those cellular processes and conditions to disease progression have yet to be defined. Here, we applied a disease similarity approach to identify unknown molecular targets of AD by using transcriptomic data from congenital diseases known to increase AD risk, namely Down Syndrome, Niemann Pick Disease Type C (NPC), and Mucopolysaccharidoses I. We uncovered common pathways, hub genes, and miRNAs across in vitro and in vivo models of these diseases as potential molecular targets for neuroprotection and amelioration of AD pathology, many of which have never been associated with AD. We then investigated common molecular alterations in brain samples from an NPC disease mouse model by juxtaposing them with brain samples of both human and mouse models of AD. Detailed phenotypic and molecular analyses revealed that the NPC mut mouse model can serve as a potential short-lived in vivo model for AD research and for understanding molecular factors affecting brain aging. This research represents the first comprehensive approach to congenital disease association with neurodegeneration and a new perspective on AD research while highlighting shortcomings and lack of correlation in diverse in vitro models. Considering the lack of an AD mouse model that recapitulates the physiological hallmarks of brain aging, the characterization of a short-lived NPC mouse model will further accelerate the research in these fields and offer a unique model for understanding the molecular mechanisms of AD from a perspective of accelerated brain aging.

3.
Geroscience ; 44(4): 1995-2006, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35695982

RESUMEN

At the cellular level, many aspects of aging are conserved across species. This has been demonstrated by numerous studies in simple model organisms like Saccharomyces cerevisiae, Caenorhabdits elegans, and Drosophila melanogaster. Because most genetic screens examine loss of function mutations or decreased expression of genes through reverse genetics, essential genes have often been overlooked as potential modulators of the aging process. By taking the approach of increasing the expression level of a subset of conserved essential genes, we found that 21% of these genes resulted in increased replicative lifespan in S. cerevisiae. This is greater than the ~ 3.5% of genes found to affect lifespan upon deletion, suggesting that activation of essential genes may have a relatively disproportionate effect on increasing lifespan. The results of our experiments demonstrate that essential gene overexpression is a rich, relatively unexplored means of increasing eukaryotic lifespan.


Asunto(s)
Longevidad , Saccharomyces cerevisiae , Animales , Longevidad/genética , Saccharomyces cerevisiae/genética , Genes Esenciales/genética , Drosophila melanogaster/genética , Envejecimiento/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...