Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37982485

RESUMEN

We propose a method to build full-atomistic (FA) amorphous polymer structures using reverse-mapping from coarse-grained (CG) models. In this method, three models with different resolutions are utilized, namely the CG1, CG2, and FA models. It is assumed that the CG1 model is more abstract than the CG2 model. The CG1 is utilized to equilibrate the system, and then sequential reverse-mapping procedures from the CG1 to the CG2 models and from the CG2 to the FA models are conducted. A mapping relation between the CG1 and the FA models is necessary to generate a polymer structure with a given density and radius of chains. Actually, we have used the Kremer-Grest (KG) model as the CG1 and the monomer-level CG model as the CG2 model. Utilizing the mapping relation, we have developed a scheme that constructs an FA polymer model from the KG model. In the scheme, the KG model, the monomer level CG model, and the FA model are successively constructed. The scheme is applied to polyethylene (PE), cis 1,4-polybutadiene (PB), and poly(methyl methacrylate) (PMMA). As a validation, the structures of PE and PB constructed by the scheme were carefully checked through comparison with those obtained using long-time FA molecular dynamics (MD) simulations. We found that both short- and long-range chain structures constructed by the scheme reproduced those obtained by the FA MD simulations. Then, as an interesting application, the scheme is applied to generate an entangled PMMA structure. The results showed that the scheme provides an efficient and easy way to construct amorphous structures of FA polymers.

2.
J Phys Chem B ; 122(1): 338-347, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29285920

RESUMEN

In the analyses of miscibility behaviors of macromolecules and polymers, dissipative particle dynamics (DPD) simulations are generally performed. In these simulations, the so-called χ parameters describing the effective interactions among particles are crucial. It has been known that such parameters can be obtained within the classical or empirical force field frameworks. However, there is a potential problem that charge transfer and polarization occasionally occur. Additionally, satisfactory reference parameters are not available for some cases. Therefore, we developed a new procedure to evaluate the set of parameters by using the ab initio fragment molecular orbital (FMO) method which can provide the set of interaction energies among segments as polymer units. Moreover, we evaluated the anisotropy of molecules by using the FMO-based effective interaction parameters for three standard binary mixture systems (hexane-nitrobenzene, polyisobutylene-diisobutyl ketone, and polyisoprene-polystyrene). The calculated values showed good agreement with the experimental values with about 10% errors.

3.
RSC Adv ; 8(47): 26461-26468, 2018 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35541069

RESUMEN

Peptide amphiphiles are one of the most promising materials in the biomedical field, so much effort has been devoted to characterizing the mechanism of their self-assembly and thermosensitive gelation. In this work, vapor pressure osmometry measurements were carried out to parameterize the thermosensitivity of interactions between peptide amphiphiles in an aqueous solution. The osmometry measurement verified that the peptides became more hydrophobic as temperature increased, which was quantitatively described with the Flory-Huggins χ parameter. Thereafter, a coarse-grained molecular model was used to simulate peptide amphiphiles dissolved in an aqueous solution. The temperature sensitive coarse-grained parameter a HW, which is the repulsive force between the hydrophilic head of the peptide amphiphile and water was estimated from the aforementioned experimentally obtained χ. Furthermore, the effects of concentration and temperature on the self-assembly behavior of peptide amphiphiles were quantitatively studied by dissipative particle dynamics. The simulation results revealed that a HW plays an important role in self-assembly characteristics and in the resulting microstructure of the peptide amphiphiles, which coincides with previous experimental and computational findings. The methodology in quantitatively linking the coarse-grained parameter from experiment and theory provides a sensible foundation for bridging future simulation studies with experimental work on macromolecules.

4.
RSC Adv ; 8(60): 34582-34595, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35548624

RESUMEN

The mesoscopic structures of polymer electrolyte membrane (PEM) affect the performances of fuel cells. Nafion® with the Teflon® backbone has been the most widely used of all PEMs, but sulfonated poly-ether ether-ketone (SPEEK) having an aromatic backbone has drawn interest as an alternative to Nafion. In the present study, a series of dissipative particle dynamics (DPD) simulations were performed to compare Nafion and SPEEK. These PEM polymers were modeled by connected particles corresponding to the hydrophobic backbone and the hydrophilic moiety of sulfonic acid group. The water particle interacting with Nafion particles was prepared as well. The crucial interaction parameters among DPD particles were evaluated by a series of calculations based on the fragment molecular orbital (FMO) method in a non-empirical way (Okuwaki et al., J. Phys. Chem. B, 2018, 122, 338-347). Through the DPD simulations, the water and hydrophilic particles aggregated, forming cluster networks surrounded by the hydrophobic phase. The structural features of formed water clusters were investigated in detail. Furthermore, the differences in percolation behaviors between Nafion and SPEEK revealed much better connectivity among water clusters by Nafion. The present FMO-DPD simulation results were in good agreement with available experimental data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...