Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38619248

RESUMEN

The popularity of nonlinear analysis has been growing simultaneously with the technology of effort monitoring. Therefore, considering the simple methods of physiological data collection and the approaches from the information domain, we proposed integrating univariate and bivariate analysis for the rest and effort comparison. Two sessions separated by an intensive training program were studied. Nine subjects participated in the first session (S1) and seven in the second session (S2). The protocol included baseline (BAS), exercise, and recovery phase. During all phases, electrocardiogram (ECG) was recorded. For the analysis, we selected corresponding data lengths of BAS and exercise usually lasting less than 5 min. We found the utility of the differences between original data and their surrogates for sample entropy Sdiff and Kullback-Leibler divergence KLDdiff. Sdiff of heart rate variability was negative in BAS and exercise but its sensitivity for phases discrimination was not satisfactory. We studied the bivariate analysis of RR intervals and corresponding QT peaks by Interlayer Mutual Information (IMI) and average edge overlap (AVO) markers. While the IMI parameter decreases in exercise conditions, AVO increased in effort compared to BAS. These findings conclude that researchers should consider a bivariate analysis of extracted RR intervals and corresponding QT datasets, when only ECG is recorded during tests.


Asunto(s)
Electrocardiografía , Descanso , Humanos , Recolección de Datos , Entropía , Frecuencia Cardíaca
2.
Front Netw Physiol ; 2: 877474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36926071

RESUMEN

In this paper, we studied the time-domain irreversibility of time series, which is a fundamental property of systems in a nonequilibrium state. We analyzed a subgroup of the databases provided by University of Rochester, namely from the THEW Project. Our data consists of LQTS (Long QT Syndrome) patients and healthy persons. LQTS may be associated with an increased risk of sudden cardiac death (SCD), which is still a big clinical problem. ECG-based artificial intelligence methods can identify sudden cardiac death with a high accuracy. It follows that heart rate variability contains information about the possibility of SCD, which may be extracted, provided that appropriate methods are developed for this purpose. Our aim was to assess the complexity of both groups using visibility graph (VG) methods. Multivariate analysis of connection patterns of graphs built from time series was performed using multiplex visibility graph methods. For univariate time series, time irreversibility of the ECG interval QT of patients with LQTS was lower than for the healthy. However, we did not observe statistically significant difference in the comparison of RR intervals time series of the two groups studied. The connection patterns retrieved from multiplex VGs have more similarity with each other in the case of LQTS patients. This observation may be used to develop better methods for SCD risk stratification.

3.
Front Physiol ; 12: 611731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163369

RESUMEN

Using information theoretic measures, relations between heart rhythm, repolarization in the tissue of the heart, and the diastolic interval time series are analyzed. These processes are a fragment of the cardiovascular physiological network. A comparison is made between the results for 84 (42 women) healthy individuals and 65 (45 women) long QT syndrome type 1 (LQTS1) patients. Self-entropy, transfer entropy, and joint transfer entropy are calculated for the three time series and their combinations. The results for self-entropy indicate the well-known result that regularity of heart rhythm for healthy individuals is larger than that of QT interval series. The flow of information depends on the direction with the flow from the heart rhythm to QT dominating. In LQTS1 patients, however, our results indicate that information flow in the opposite direction may occur-a new result. The information flow from the heart rhythm to QT dominates, which verifies the asymmetry seen by Porta et al. in the variable tilt angle experiment. The amount of new information and self-entropy for LQTS1 patients is smaller than that for healthy individuals. However, information transfers from RR to QT and from DI to QT are larger in the case of LQTS1 patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA