Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 18(6): e13030, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31423721

RESUMEN

Prolonged lifespan and improved health in late adulthood can be achieved by partial inhibition of mitochondrial proteins in yeast, worms, fruit flies, and mice. Upregulation of the mitochondrial unfolded protein response (mtUPR) has been proposed as a common pathway in lifespan extension induced by mitochondrial defects. However, it is not known whether mtUPR is elevated in long-lived mouse models. Here, we report that Snell dwarf mice, which show 30%-40% lifespan extension and prolonged healthspan, exhibit augmented mitochondrial stress responses. Cultured cells from Snell mice show elevated levels of the mitochondrial chaperone HSP60 and mitochondrial protease LONP1, two components of the mtUPR. In response to mitochondrial stress, the increase in Tfam (mitochondrial transcription factor A), a regulator of mitochondrial transcription, is higher in Snell cells, while Pgc-1α, the main regulator of mitochondrial biogenesis, is upregulated only in Snell cells. Consistent with these differences, Snell cells maintain oxidative respiration rate, ATP content, and expression of mitochondrial-DNA-encoded genes after exposure to doxycycline stress. In vivo, compared to normal mice, Snell mice show stronger hepatic mtUPR induction and maintain mitochondrial protein stoichiometry after mitochondrial stress exposure. Overall, our work demonstrates that a long-lived mouse model exhibits improved mitochondrial stress response, and provides a rationale for future mouse lifespan studies involving compounds that induce mtUPR. Further research on mitochondrial homeostasis in long-lived mice may facilitate development of interventions that blunt mitochondrial deterioration in neurodegenerative diseases such as Alzheimer's and Parkinson's and postpone diseases of aging in humans.


Asunto(s)
Longevidad , Mitocondrias/metabolismo , Estrés Oxidativo , Animales , Masculino , Ratones , Ratones Endogámicos
2.
J Mol Endocrinol ; 63(2): 123-138, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31357177

RESUMEN

It has been hypothesized that transcriptional changes associated with lower mTORC1 activity in mice with reduced levels of growth hormone and insulin-like growth factor 1 are responsible for the longer healthy lifespan of these mutant mice. Cell lines and tissues from these mice show alterations in the levels of many proteins that cannot be explained by corresponding changes in mRNAs. Such post-transcriptional modulation may be the result of preferential mRNA translation by the cap-independent translation of mRNA bearing the N6-methyl-adenosine (m6A) modification. The long-lived endocrine mutants - Snell dwarf, growth hormone receptor deletion and pregnancy-associated plasma protein-A knockout - all show increases in the N6-adenosine-methyltransferases (METTL3/14) that catalyze 6-methylation of adenosine (m6A) in the 5' UTR region of select mRNAs. In addition, these mice have elevated levels of YTH domain-containing protein 1 (YTHDF1), which recognizes m6A and promotes translation by a cap-independent mechanism. Consistently, multiple proteins that can be translated by the cap-independent mechanism are found to increase in these mice, including DNA repair and mitochondrial stress response proteins, without changes in corresponding mRNA levels. Lastly, a drug that augments cap-independent translation by inhibition of cap-dependent pathways (4EGI-1) was found to elevate levels of the same set of proteins and able to render cells resistant to several forms of in vitro stress. Augmented translation by cap-independent pathways facilitated by m6A modifications may contribute to the stress resistance and increased healthy longevity of mice with diminished GH and IGF-1 signals.


Asunto(s)
Sistema Endocrino/metabolismo , Longevidad , Mutación/genética , Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo , Regulación hacia Arriba , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Fibroblastos/metabolismo , Humanos , Hidrazonas/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones Noqueados , Ratones Mutantes , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores de Somatotropina/deficiencia , Receptores de Somatotropina/metabolismo , Tiazoles/farmacología , Regulación hacia Arriba/efectos de los fármacos
3.
J Immunol ; 193(8): 4214-4222, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25225670

RESUMEN

The nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (Nlrp3) inflammasome plays an important role in inflammation by controlling the maturation and secretion of the cytokines IL-1ß and IL-18 in response to multiple stimuli including pore-forming toxins, particulate matter, and ATP. Although the pathways activated by the latter stimuli lead to a decrease in intracellular K(+) concentration, which is required for inflammasome activation, the mechanism by which microbial RNA activates Nlrp3, remains poorly understood. In this study, we found that cytosolic poly(I:C), but not total RNA from healthy macrophages, macrophages undergoing pyroptosis, or mitochondrial RNA, induces caspase-1 activation and IL-1ß release through the Nlrp3 inflammasome. Experiments with macrophages deficient in Tlr3, Myd88, or Trif, indicate that poly(I:C) induces Nlrp3 activation independently of TLR signaling. Further analyses revealed that the cytosolic sensors Rig-I and melanoma differentiation-associated gene 5 act redundantly via the common adaptor mitochondrial antiviral signaling (Mavs) to induce Nlrp3 activation in response to poly(I:C), but not ATP or nigericin. Mechanistically, Mavs triggered membrane permeabilization and K(+) efflux independently of the inflammasome which were required for poly(I:C)-induced Nlrp3 activation. We conclude that poly (I:C) activates the inflammasome through an Mavs-dependent surveillance pathway that converges into a common K(+) lowering step in the cytosol that is essential for the induction of Nlrp3 activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Portadoras/inmunología , Potasio/metabolismo , ARN Bicatenario/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Caspasa 1/inmunología , Citosol , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/inmunología , Inflamación/inmunología , Helicasa Inducida por Interferón IFIH1 , Interleucina-18/biosíntesis , Interleucina-18/metabolismo , Interleucina-1beta/biosíntesis , Interleucina-1beta/metabolismo , Transporte Iónico , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Proteína con Dominio Pirina 3 de la Familia NLR , Poli I-C/inmunología , ARN Bacteriano/inmunología , ARN Viral/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...