Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
JHEP Rep ; 3(2): 100214, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33604531

RESUMEN

BACKGROUND & AIMS: As the composition of the bile acid (BA) pool has a major impact on liver pathophysiology, we studied its regulation by the BA receptor Takeda G protein coupled receptor (TGR5), which promotes hepatoprotection against BA overload. METHODS: Wild-type, total and hepatocyte-specific TGR5-knockout, and TGR5-overexpressing mice were used in: partial (66%) and 89% extended hepatectomies (EHs) upon normal, ursodeoxycholic acid (UDCA)- or cholestyramine (CT)-enriched diet, bile duct ligation (BDL), cholic acid (CA)-enriched diet, and TGR5 agonist (RO) treatments. We thereby studied the impact of TGR5 on: BA composition, liver injury, regeneration and survival. We also performed analyses on the gut microbiota (GM) and gallbladder (GB). Liver BA composition was analysed in patients undergoing major hepatectomy. RESULTS: The TGR5-KO hyperhydrophobic BA composition was not directly related to altered BA synthesis, nor to TGR5-KO GM dysbiosis, as supported by hepatocyte-specific KO mice and co-housing experiments, respectively. The TGR5-dependent control of GB dilatation was crucial for BA composition, as determined by experiments including RO treatment and/or cholecystectomy. The poor TGR5-KO post-EH survival rate, related to exacerbated peribiliary necrosis and BA overload, was improved by shifting BAs toward a less toxic composition (CT treatment). After either BDL or a CA-enriched diet with or without cholecystectomy, we found that GB dilatation had strong TGR5-dependent hepatoprotective properties. In patients, a more hydrophobic liver BA composition was correlated with an unfavourable outcome after hepatectomy. CONCLUSIONS: BA composition is crucial for hepatoprotection in mice and humans. We indicate TGR5 as a key regulator of BA profile and thereby as a potential hepatoprotective target under BA overload conditions. LAY SUMMARY: Through multiple in vivo experimental approaches in mice, together with a patient study, this work brings some new light on the relationships between biliary homeostasis, gallbladder function, and liver protection. We showed that hepatic bile acid composition is crucial for optimal liver repair, not only in mice, but also in human patients undergoing major hepatectomy.

2.
Diabetologia ; 63(6): 1223-1235, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32173762

RESUMEN

AIMS/HYPOTHESIS: Drug and surgical-based therapies in type 2 diabetes are associated with altered gut microbiota architecture. Here we investigated the role of the gut microbiome in improved glucose homeostasis following bariatric surgery. METHODS: We carried out gut microbiome analyses in gastrectomised (by vertical sleeve gastrectomy [VSG]) rats of the Goto-Kakizaki (GK) non-obese model of spontaneously occurring type 2 diabetes, followed by physiological studies in the GK rat. RESULTS: VSG in the GK rat led to permanent improvement of glucose tolerance associated with minor changes in the gut microbiome, mostly characterised by significant enrichment of caecal Prevotella copri. Gut microbiota enrichment with P. copri in GK rats through permissive antibiotic treatment, inoculation of gut microbiota isolated from gastrectomised GK rats, and direct inoculation of P. copri, resulted in significant improvement of glucose tolerance, independent of changes in body weight. Plasma bile acids were increased in GK rats following inoculation with P. copri and P. copri-enriched microbiota from VSG-treated rats; the inoculated GK rats then showed increased liver glycogen and upregulated expression of Fxr (also known as Nr1h4), Srebf1c, Chrebp (also known as Mlxipl) and Il10 and downregulated expression of Cyp7a1. CONCLUSIONS: Our data underline the impact of intestinal P. copri on improved glucose homeostasis through enhanced bile acid metabolism and farnesoid X receptor (FXR) signalling, which may represent a promising opportunity for novel type 2 diabetes therapeutics.


Asunto(s)
Diabetes Mellitus Tipo 2/microbiología , Microbioma Gastrointestinal/fisiología , Prevotella/fisiología , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Masculino , Ratas , Transducción de Señal/fisiología
3.
Cell Rep ; 30(7): 2306-2320.e5, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075738

RESUMEN

Exposure to natural metabolites contributes to the risk of cardiometabolic diseases (CMDs). Through metabolome profiling, we identify the inverse correlation between serum concentrations of 4-cresol and type 2 diabetes. The chronic administration of non-toxic doses of 4-cresol in complementary preclinical models of CMD reduces adiposity, glucose intolerance, and liver triglycerides, enhances insulin secretion in vivo, stimulates islet density and size, and pancreatic ß-cell proliferation, and increases vascularization, suggesting activated islet enlargement. In vivo insulin sensitivity is not affected by 4-cresol. The incubation of mouse isolated islets with 4-cresol results in enhanced insulin secretion, insulin content, and ß-cell proliferation of a magnitude similar to that induced by GLP-1. In both CMD models and isolated islets, 4-cresol is associated with the downregulated expression of the kinase DYRK1A, which may mediate its biological effects. Our findings identify 4-cresol as an effective regulator of ß-cell function, which opens up perspectives for therapeutic applications in syndromes of insulin deficiency.


Asunto(s)
Linfocitos B/metabolismo , Glucemia/metabolismo , Cresoles/uso terapéutico , Diabetes Mellitus Tipo 2/genética , Secreción de Insulina/efectos de los fármacos , Metabolómica/métodos , Obesidad/metabolismo , Animales , Proliferación Celular , Cresoles/farmacología , Homeostasis , Humanos , Ratones , Ratas
4.
Gut ; 69(1): 146-157, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30723104

RESUMEN

OBJECTIVE: We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN: Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS: In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION: The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.


Asunto(s)
Sistema Biliar/fisiopatología , Colestasis Intrahepática/prevención & control , Receptores Acoplados a Proteínas G/fisiología , Animales , Bilis/metabolismo , Ácidos y Sales Biliares/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Colestasis Intrahepática/metabolismo , Impedancia Eléctrica , Epitelio/fisiopatología , Ácidos Isonipecóticos/farmacología , Ácidos Isonipecóticos/uso terapéutico , Ratones Endogámicos C57BL , Ratones Noqueados , Oximas/farmacología , Oximas/uso terapéutico , Permeabilidad , Fosforilación/fisiología , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/fisiología , Proteínas de Uniones Estrechas/metabolismo
5.
Cell Rep ; 20(1): 136-148, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683308

RESUMEN

The influence of the gut microbiome on metabolic and behavioral traits is widely accepted, though the microbiome-derived metabolites involved remain unclear. We carried out untargeted urine 1H-NMR spectroscopy-based metabolic phenotyping in an isogenic C57BL/6J mouse population (n = 50) and show that microbial-host co-metabolites are prodromal (i.e., early) markers predicting future divergence in metabolic (obesity and glucose homeostasis) and behavioral (anxiety and activity) outcomes with 94%-100% accuracy. Some of these metabolites also modulate disease phenotypes, best illustrated by trimethylamine-N-oxide (TMAO), a product of microbial-host co-metabolism predicting future obesity, impaired glucose tolerance (IGT), and behavior while reducing endoplasmic reticulum stress and lipogenesis in 3T3-L1 adipocytes. Chronic in vivo TMAO treatment limits IGT in HFD-fed mice and isolated pancreatic islets by increasing insulin secretion. We highlight the prodromal potential of microbial metabolites to predict disease outcomes and their potential in shaping mammalian phenotypic heterogeneity.


Asunto(s)
Ansiedad/microbiología , Microbioma Gastrointestinal , Intolerancia a la Glucosa/microbiología , Metaboloma , Obesidad/microbiología , Fenotipo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Ansiedad/metabolismo , Biomarcadores/metabolismo , Glucemia/metabolismo , Línea Celular , Estrés del Retículo Endoplásmico , Intolerancia a la Glucosa/metabolismo , Interacciones Huésped-Patógeno , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Lipogénesis , Masculino , Metilaminas/farmacología , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Oxidantes/farmacología
6.
Hepatology ; 64(3): 941-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27301647

RESUMEN

UNLABELLED: Many regulatory pathways are involved in liver regeneration after partial hepatectomy (PH), to initiate growth, protect liver cells, and sustain remnant liver functions. Extracellular adenosine triphosphate rises in blood and bile after PH and contributes to liver regeneration, although purinergic receptors and mechanisms remain to be precisely explored. In this work we analyzed during regeneration after PH the involvement of P2X4 purinergic receptors, highly expressed in the liver. P2X4 receptor expression in the liver, liver histology, hepatocyte proliferation, plasma bile acid concentration, bile flow and composition, and lysosome distribution in hepatocytes were studied in wild-type and P2X4 knockout (KO) mice, before and after PH. P2X4 receptors were expressed in hepatocytes and Kupffer cells; in hepatocytes, P2X4 was concentrated in subcanalicular areas closely costained with lysosomal markers. After PH, delayed regeneration, hepatocyte necrosis, and cholestasis were observed in P2X4-KO mice. In P2X4-KO mice, post-PH biliary adaptation was impaired with a smaller increase in bile flow and HCO3 (-) biliary output, as well as altered biliary composition with reduced adenosine triphosphate and lysosomal enzyme release. In line with these data, lysosome distribution and biogenesis were altered in P2X4-KO compared with wild-type mice. CONCLUSION: During liver regeneration after PH, P2X4 contributes to the complex control of biliary homeostasis through mechanisms involving pericanalicular lysosomes, with a resulting impact on hepatocyte protection and proliferation. (Hepatology 2016;64:941-953).


Asunto(s)
Sistema Biliar/fisiología , Regeneración Hepática , Hígado/metabolismo , Lisosomas/fisiología , Receptores Purinérgicos P2X4/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Ácidos y Sales Biliares/sangre , Proliferación Celular , Células Cultivadas , Hepatectomía , Hepatocitos/fisiología , Homeostasis , Hígado/ultraestructura , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Dig Dis ; 33(3): 319-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26045264

RESUMEN

BACKGROUND: Most of the literature on the bile acid (BA) membrane receptor TGR5 is dedicated to its potential role in the metabolic syndrome, through its regulatory impact on energy expenditure, insulin and GLP-1 secretion, and inflammatory processes. While the receptor was cloned in 2002, very little data are available on TGR5 functions in the normal and diseased liver. However, TGR5 is highly expressed in Kupffer cells and liver endothelial cells, and is particularly enriched in the biliary tract [cholangiocytes and gallbladder (GB) smooth muscle cells]. We recently demonstrated that TGR5 has a crucial protective impact on the liver in case of BA overload, including after partial hepatectomy. KEY MESSAGES: TGR5-KO mice after PH exhibited periportal bile infarcts, excessive hepatic inflammation and defective adaptation of biliary composition (bicarbonate and chloride). Most importantly, TGR5-KO mice had a more hydrophobic BA pool, with more secondary BA than WT animals, suggesting that TGR5-KO bile may be harmful for the liver, mainly in situations of BA overload. As GB is both the tissue displaying the highest level of TGR5 expression and a crucial physiological site for the regulation of BA pool hydrophobicity by reducing secondary BA, we investigated whether TGR5 may control BA pool composition through an impact on GB. Preliminary data suggest that in the absence of TGR5, reduced GB filling dampens the cholecystohepatic shunt, resulting in more secondary BA, more hydrophobic BA pool and extensive liver injury in case of BA overload. CONCLUSIONS: In the setting of BA overload, TGR5 is protective of the liver through the regulation of not only secretory and inflammatory processes, but also through the control of BA pool composition, at least in part by targeting the GB. Thereby, TGR5 appears to be crucial for protecting the regenerating liver from BA overload.


Asunto(s)
Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Regeneración Hepática/genética , Receptores Acoplados a Proteínas G/genética , Animales , Vesícula Biliar/metabolismo , Hepatectomía , Interacciones Hidrofóbicas e Hidrofílicas , Regeneración Hepática/fisiología , Ratones
9.
Hepatology ; 58(4): 1451-60, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23686672

RESUMEN

UNLABELLED: Many regulatory pathways are involved in liver regeneration after partial hepatectomy (PH) to initiate growth, protect liver cells, and sustain functions of the remnant liver. Bile acids (BAs), whose levels rise in the blood early after PH, stimulate both hepatocyte proliferation and protection, in part through their binding to the nuclear farnesoid X receptor (FXR). However, the effect of the BA receptor, TGR5 (G-protein-coupled BA receptor 1) after PH remains to be studied. Liver histology, hepatocyte proliferation, BA concentrations (plasma, bile, liver, urine, and feces), bile flow and composition, and cytokine production were studied in wild-type (WT) and TGR5 KO (knockout) mice before and after PH. BA composition (plasma, bile, liver, urine, and feces) was more hydrophobic in TGR5 KO than in WT mice. After PH, severe hepatocyte necrosis, prolonged cholestasis, exacerbated inflammatory response, and delayed regeneration were observed in TGR5 KO mice. Although hepatocyte adaptive response to post-PH BA overload was similar in WT and TGR5 KO mice, kidney and biliary adaptive responses were strongly impaired in TGR5 KO mice. Cholestyramine treatment, as well as Kupffer cell depletion, significantly improved the post-PH TGR5 KO mice phenotype. After bile duct ligation or upon a cholic acid-enriched diet, TGR5 KO mice exhibited more severe liver injury than WT as well as impaired BA elimination in urine. CONCLUSION: TGR5 is crucial for liver protection against BA overload after PH, primarily through the control of bile hydrophobicity and cytokine secretion. In the absence of TGR5, intrahepatic stasis of abnormally hydrophobic bile and excessive inflammation, in association with impaired bile flow adaptation and deficient urinary BA efflux, lead to BA overload-induced liver injury and delayed regeneration.


Asunto(s)
Ácidos y Sales Biliares/efectos adversos , Ácidos y Sales Biliares/metabolismo , Hepatitis/etiología , Regeneración Hepática/fisiología , Hígado/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Proliferación Celular , Resina de Colestiramina/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hepatectomía , Hepatitis/metabolismo , Hepatitis/patología , Hígado/patología , Hígado/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Fenotipo , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...