Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35904415

RESUMEN

The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Animales , Humanos , Mamíferos/metabolismo , Manganeso/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Biol ; 221(5)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35404387

RESUMEN

The endomembrane system of eukaryotic cells is essential for cellular homeostasis during growth and proliferation. Previous work showed that a central regulator of growth, namely the target of rapamycin complex 1 (TORC1), binds both membranes of vacuoles and signaling endosomes (SEs) that are distinct from multivesicular bodies (MVBs). Interestingly, the endosomal TORC1, which binds membranes in part via the EGO complex, critically defines vacuole integrity. Here, we demonstrate that SEs form at a branch point of the biosynthetic and endocytic pathways toward the vacuole and depend on MVB biogenesis. Importantly, function of the HOPS tethering complex is essential to maintain the identity of SEs and proper endosomal and vacuolar TORC1 activities. In HOPS mutants, the EGO complex redistributed to the Golgi, which resulted in a partial mislocalization of TORC1. Our study uncovers that SE function requires a functional HOPS complex and MVBs, suggesting a tight link between trafficking and signaling along the endolysosomal pathway.


Asunto(s)
Endosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Endosomas/genética , Endosomas/metabolismo , Aparato de Golgi , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vacuolas/metabolismo
3.
Curr Biol ; 31(2): 297-309.e8, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33157024

RESUMEN

Organelles of the endomembrane system maintain their identity and integrity during growth or stress conditions by homeostatic mechanisms that regulate membrane flux and biogenesis. At lysosomes and endosomes, the Fab1 lipid kinase complex and the nutrient-regulated target of rapamycin complex 1 (TORC1) control the integrity of the endolysosomal homeostasis and cellular metabolism. Both complexes are functionally connected as Fab1-dependent generation of PI(3,5)P2 supports TORC1 activity. Here, we identify Fab1 as a target of TORC1 on signaling endosomes, which are distinct from multivesicular bodies, and provide mechanistic insight into their crosstalk. Accordingly, TORC1 can phosphorylate Fab1 proximal to its PI3P-interacting FYVE domain, which causes Fab1 to shift to signaling endosomes, where it generates PI(3,5)P2. This, in turn, regulates (1) vacuole morphology, (2) recruitment of TORC1 and the TORC1-regulatory Rag GTPase-containing EGO complex to signaling endosomes, and (3) TORC1 activity. Thus, our study unravels a regulatory feedback loop between TORC1 and the Fab1 complex that controls signaling at endolysosomes.


Asunto(s)
Endosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Pruebas de Enzimas , Retroalimentación Fisiológica , Fosforilación/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Transducción de Señal
4.
Sci Adv ; 5(9): eaax8164, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31579828

RESUMEN

The Rag/Gtr GTPases serve as a central module in the nutrient-sensing signaling network upstream of TORC1. In yeast, the anchoring of Gtr1-Gtr2 to membranes depends on the Ego1-Ego2-Ego3 ternary complex (EGO-TC), resulting in an EGO-TC-Gtr1-Gtr2 complex (EGOC). EGO-TC and human Ragulator share no obvious sequence similarities and also differ in their composition with respect to the number of known subunits, which raises the question of how the EGO-TC fulfills its function in recruiting Gtr1-Gtr2. Here, we report the structure of EGOC, in which Ego1 wraps around Ego2, Ego3, and Gtr1-Gtr2. In addition, Ego3 interacts with Gtr1-Gtr2 to stabilize the complex. The functional roles of key residues involved in the assembly are validated by in vivo assays. Our structural and functional data combined demonstrate that EGOC and Ragulator-Rag complex are structurally conserved and that EGO-TC is essential and sufficient to recruit Gtr1-Gtr2 to membranes to ensure appropriate TORC1 signaling.


Asunto(s)
Proteínas Fúngicas/química , GTP Fosfohidrolasas/química , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Modelos Moleculares , Complejos Multiproteicos/química , Aminoácidos , Sitios de Unión , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejos Multiproteicos/metabolismo , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Relación Estructura-Actividad
5.
Mol Cell ; 73(2): 325-338.e8, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30527664

RESUMEN

The eukaryotic TORC1 kinase is a homeostatic controller of growth that integrates nutritional cues and mediates signals primarily from the surface of lysosomes or vacuoles. Amino acids activate TORC1 via the Rag GTPases that combine into structurally conserved multi-protein complexes such as the EGO complex (EGOC) in yeast. Here we show that Ego1, which mediates membrane-anchoring of EGOC via lipid modifications that it acquires while traveling through the trans-Golgi network, is separately sorted to vacuoles and perivacuolar endosomes. At both surfaces, it assembles EGOCs, which regulate spatially distinct pools of TORC1 that impinge on functionally divergent effectors: vacuolar TORC1 predominantly targets Sch9 to promote protein synthesis, whereas endosomal TORC1 phosphorylates Atg13 and Vps27 to inhibit macroautophagy and ESCRT-driven microautophagy, respectively. Thus, the coordination of three key regulatory nodes in protein synthesis and degradation critically relies on a division of labor between spatially sequestered populations of TORC1.


Asunto(s)
Proteostasis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Endosomas/enzimología , Endosomas/genética , Regulación Fúngica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Vacuolas/enzimología , Vacuolas/genética
6.
Cell Rep ; 20(2): 281-288, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28700931

RESUMEN

Amino acids stimulate the eukaryotic target of rapamycin complex 1 (TORC1), and hence growth, through the Rag GTPases and their regulators. Among these, the yeast Lst4-Lst7 Rag GTPase GAP complex clusters, as we previously reported, at the vacuolar membrane upon amino acid starvation. In response to amino acid refeeding, it activates the Rag GTPase-TORC1 branch and is then dispersed from the vacuolar surface. Here, we show that the latter effect is driven by TORC1 itself, which directly phosphorylates several residues within the intra-DENN loop of Lst4 that, only in its non-phosphorylated state, tethers the Lst4-Lst7 complex to the vacuolar membrane. An Lst4 variant disrupting this feedback inhibition mechanism causes TORC1 hyperactivation and proliferation defects in cells grown on poor nitrogen sources. Thus, we identify Lst4 as a TORC1 target and key node of a homeostatic mechanism that adjusts TORC1 activity to the availability of amino acids.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Inmunoprecipitación , Espectrometría de Masas , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Microscopía Fluorescente , Fosforilación , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Proteínas de Transporte Vesicular/genética
7.
Cell Discov ; 3: 17012, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28496991

RESUMEN

Eukaryotic cell cycle progression through G1-S is driven by hormonal and growth-related signals that are transmitted by the target of rapamycin complex 1 (TORC1) pathway. In yeast, inactivation of TORC1 restricts G1-S transition due to the rapid clearance of G1 cyclins (Cln) and the stabilization of the B-type cyclin (Clb) cyclin-dependent kinase (CDK) inhibitor Sic1. The latter mechanism remains mysterious but requires the phosphorylation of Sic1-Thr173 by Mpk1 and inactivation of the Sic1-pThr173-targeting phosphatase (PP2ACdc55) through greatwall kinase-activated endosulfines. Here we show that the Sic1-pThr173 residue serves as a specific docking site for the CDK phospho-acceptor subunit Cks1 that sequesters, together with a C-terminal Clb5-binding motif in Sic1, Clb5-CDK-Cks1 complexes, thereby preventing them from flagging Sic1 for ubiquitin-dependent proteolysis. Interestingly, this functional switch of Sic1 from a target to an inhibitor of cyclin-CDK-Cks1 also operates in proliferating cells and is coordinated by the greatwall kinase, which responds to both Cln-CDK-dependent cell-cycle and TORC1-mediated nutritional cues.

8.
Cell Rep ; 13(1): 1-7, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26387955

RESUMEN

Rag GTPases assemble into heterodimeric complexes consisting of RagA or RagB and RagC or RagD in higher eukaryotes, or Gtr1 and Gtr2 in yeast, to relay amino acid signals toward the growth-regulating target of rapamycin complex 1 (TORC1). The TORC1-stimulating state of Rag GTPase heterodimers, containing GTP- and GDP-loaded RagA/B/Gtr1 and RagC/D/Gtr2, respectively, is maintained in part by the FNIP-Folliculin RagC/D GAP complex in mammalian cells. Here, we report the existence of a similar Lst4-Lst7 complex in yeast that functions as a GAP for Gtr2 and that clusters at the vacuolar membrane in amino acid-starved cells. Refeeding of amino acids, such as glutamine, stimulated the Lst4-Lst7 complex to transiently bind and act on Gtr2, thereby entailing TORC1 activation and Lst4-Lst7 dispersal from the vacuolar membrane. Given the remarkable functional conservation of the RagC/D/Gtr2 GAP complexes, our findings could be relevant for understanding the glutamine addiction of mTORC1-dependent cancers.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacología , Sitios de Unión , Glutamina/metabolismo , Glutamina/farmacología , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Unión Proteica , Multimerización de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Factores de Transcripción/genética , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/genética
9.
J Cell Sci ; 128(13): 2278-92, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25999476

RESUMEN

Membrane fusion at the vacuole depends on a conserved machinery that includes SNAREs, the Rab7 homolog Ypt7 and its effector HOPS. Here, we demonstrate that Ypt7 has an unexpected additional function by controlling membrane homeostasis and nutrient-dependent signaling on the vacuole surface. We show that Ivy1, the yeast homolog of mammalian missing-in-metastasis (MIM), is a vacuolar effector of Ypt7-GTP and interacts with the EGO/ragulator complex, an activator of the target of rapamycin kinase complex 1 (TORC1) on vacuoles. Loss of Ivy1 does not affect EGO vacuolar localization and function. In combination with the deletion of individual subunits of the V-ATPase, however, we observed reduced TORC1 activity and massive enlargement of the vacuole surface. Consistent with this, Ivy1 localizes to invaginations at the vacuole surface and on liposomes in a phosphoinositide- and Ypt7-GTP-controlled manner, which suggests a role in microautophagy. Our data, thus, reveal that Ivy1 is a novel regulator of vacuole membrane homeostasis with connections to TORC1 signaling.


Asunto(s)
Proteínas Portadoras/metabolismo , Homeostasis , Membranas Intracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Autofagia , Endocitosis , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Biológicos , Complejos Multiproteicos , Fosfatidilinositoles/metabolismo , Unión Proteica , Saccharomyces cerevisiae/ultraestructura , Transducción de Señal , Serina-Treonina Quinasas TOR , Vacuolas/ultraestructura
10.
PLoS One ; 9(8): e104194, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25117580

RESUMEN

The evolutionarily conserved target of rapamycin complex 1 (TORC1) controls growth-related processes such as protein, nucleotide, and lipid metabolism in response to growth hormones, energy/ATP levels, and amino acids. Its deregulation is associated with cancer, type 2 diabetes, and obesity. Among other substrates, mammalian TORC1 directly phosphorylates and inhibits the phosphatidate phosphatase lipin-1, a central enzyme in lipid metabolism that provides diacylglycerol for the synthesis of membrane phospholipids and/or triacylglycerol as neutral lipid reserve. Here, we show that yeast TORC1 inhibits the function of the respective lipin, Pah1, to prevent the accumulation of triacylglycerol. Surprisingly, TORC1 regulates Pah1 in part indirectly by controlling the phosphorylation status of Nem1 within the Pah1-activating, heterodimeric Nem1-Spo7 protein phosphatase module. Our results delineate a hitherto unknown TORC1 effector branch that controls lipin function in yeast, which, given the recent discovery of Nem1-Spo7 orthologous proteins in humans, may be conserved.


Asunto(s)
Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Activación Enzimática , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosforilación , Unión Proteica
11.
Cell Cycle ; 12(18): 2948-52, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23974112

RESUMEN

The target of rapamycin complex 1 (TORC1) regulates eukaryotic cell growth in response to a variety of input signals. In S. cerevisiae, amino acids activate TORC1 through the Rag guanosine triphosphatase (GTPase) heterodimer composed of Gtr1 and Gtr2 found together with Ego1 and Ego3 in the EGO complex (EGOC). The GTPase activity of Gtr1 is regulated by the SEA complex (SEAC). Specifically, SEACIT, a SEAC subcomplex containing Iml1, Npr2, and Npr3 functions as a GTPase activator (GAP) for Gtr1 to decrease the activity of TORC1 and, consequently, growth, after amino acid deprivation. Here, we present genetic epistasis data, which show that SEACAT, the other SEAC subcomplex, containing Seh1, Sea2-4, and Sec13, antagonizes the GAP function of SEACIT. Orthologs of EGOC (Ragulator), SEACIT (GATOR1), and SEACAT (GATOR2) are present in higher eukaryotes, highlighting the remarkable conservation, from yeast to man, of Rag GTPase and TORC1 regulation.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
Sci Signal ; 6(277): ra42, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23716719

RESUMEN

The Rag family of guanosine triphosphatases (GTPases) regulates eukaryotic cell growth in response to amino acids by activating the target of rapamycin complex 1 (TORC1). In humans, this pathway is often deregulated in cancer. In yeast, amino acids promote binding of GTP (guanosine 5'-triphosphate) to the Rag family GTPase Gtr1, which, in combination with a GDP (guanosine diphosphate)-bound Gtr2, forms the active, TORC1-stimulating GTPase heterodimer. We identified Iml1, which functioned in a complex with Npr2 and Npr3, as a GAP (GTPase-activating protein) for Gtr1. Upon amino acid deprivation, Iml1 transiently interacted with Gtr1 at the vacuolar membrane to stimulate its intrinsic GTPase activity and consequently decrease the activity of TORC1. Our results delineate a potentially conserved mechanism by which the Iml1, Npr2, and Npr3 orthologous proteins in humans may suppress tumor formation.


Asunto(s)
Aminoácidos/deficiencia , Proteínas Activadoras de GTPasa/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Guanosina Trifosfato/metabolismo , Inmunoprecipitación , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Saccharomyces cerevisiae , Vacuolas/metabolismo
13.
Structure ; 20(12): 2151-60, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23123112

RESUMEN

The yeast EGO complex, consisting of Gtr1, Gtr2, Ego1, and Ego3, localizes to the endosomal and vacuolar membranes and plays a pivotal role in cell growth and autophagy regulation through relaying amino acid signals to activate TORC1. Here, we report the crystal structures of a wild-type and a mutant form of Saccharomyces cerevisiae Ego3. Ego3 assumes a homodimeric structure similar to that of the mammalian MP1-p14 heterodimer and the C-terminal domains of the yeast Gtr1-Gtr2 heterodimer, both of which function in TORC1 signaling. Structural and genetic data demonstrate that the unique dimer conformation of Ego3 is essential for the integrity and function of the EGO complex. Structural and functional data also identify a potential binding site for Gtr1-Gtr2. These results suggest a structural conservation of the protein components involved in amino acid signaling to TORC1 and reveal structural insights into the molecular mechanism of Ego3 function in TORC1 signaling.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Homología Estructural de Proteína
14.
ACS Chem Biol ; 7(4): 715-22, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22260433

RESUMEN

TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high-throughput flow cytometry multiplexed screen using five GFP-tagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded, and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high-throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in a manner analogous to that of rapamycin. We have shown that CID 3528206 inhibited yeast cell growth and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC(50)'s of 150 nM and 3.9 µM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas/análisis , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Citometría de Flujo , Proteínas Fluorescentes Verdes , Humanos , Transducción de Señal/efectos de los fármacos
16.
Mol Cell ; 35(5): 563-73, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19748353

RESUMEN

The target of rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is activated by a variety of hormones (e.g., insulin) and nutrients (e.g., amino acids) and is deregulated in various cancers. Here, we report that the yeast Rag GTPase homolog Gtr1, a component of the vacuolar-membrane-associated EGO complex (EGOC), interacts with and activates TORC1 in an amino-acid-sensitive manner. Expression of a constitutively active (GTP-bound) Gtr1(GTP), which interacted strongly with TORC1, rendered TORC1 partially resistant to leucine deprivation, whereas expression of a growth inhibitory, GDP-bound Gtr1(GDP), caused constitutively low TORC1 activity. We also show that the nucleotide-binding status of Gtr1 is regulated by the conserved guanine nucleotide exchange factor (GEF) Vam6. Thus, in addition to its regulatory role in homotypic vacuolar fusion and vacuole protein sorting within the HOPS complex, Vam6 also controls TORC1 function by activating the Gtr1 subunit of the EGO complex.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Membranas Intracelulares/enzimología , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Vacuolas/enzimología , Proteínas Adaptadoras del Transporte Vesicular/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Cicloheximida/farmacología , Proteínas de Unión al ADN/metabolismo , Endosomas/enzimología , Factores de Intercambio de Guanina Nucleótido/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Membranas Intracelulares/efectos de los fármacos , Proteínas de Unión al GTP Monoméricas/genética , Complejos Multiproteicos , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Sirolimus/farmacología , Factores de Tiempo , Factores de Transcripción/metabolismo , Vacuolas/efectos de los fármacos
17.
Curr Biol ; 19(12): 985-95, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19523829

RESUMEN

BACKGROUND: It is unknown how oscillations in Cdk1 activity drive the dramatic changes in chromosome and spindle dynamics that occur at the metaphase/anaphase transition. RESULTS: We show that the Schizosaccharomyces pombe monopolin complex has distinct functions in metaphase and anaphase that are determined by the phosphorylation state of its Mde4 subunit. When Cdk1 activity is high in metaphase, Mde4 is hyperphosphorylated on Cdk1 phosphorylation sites and localizes to kinetochores. A nonphosphorylatable mutant of Mde4 does not localize to kinetochores, appears prematurely on the metaphase spindle, and interferes with spindle dynamics and chromosome segregation, illustrating the importance of Cdk1 phosphorylation in regulating metaphase monopolin activity. When Cdk1 activity drops in anaphase, dephosphorylation of Mde4 triggers monopolin localization to the mitotic spindle, where it promotes spindle elongation and integrity, coupling the late mitotic loss of Cdk1 activity to anaphase spindle dynamics. CONCLUSIONS: Together, these findings illustrate how the sequential phosphorylation and dephosphorylation of monopolin helps ensure the orderly execution of discrete steps in mitosis.


Asunto(s)
Anafase/fisiología , Cromosomas/metabolismo , Metafase/fisiología , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Biochem Parasitol ; 164(2): 147-52, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19320098

RESUMEN

Developing novel drugs against the unicellular parasite Plasmodium is complicated by the paucity of simple screening systems. Heat-shock proteins are an essential class of proteins for the parasite's cyclical life style between different cellular milieus and temperatures. The molecular chaperone Hsp90 assists a large variety of proteins, but its supporting functions for many proteins that are important for cancer have made it into a well-studied drug target. With a better understanding of the differences between Hsp90 and of the malarial parasite and Hsp90 of its human host, new therapeutic options might become available. We have generated a set of isogenic strains of the budding yeast Saccharomyces cerevisiae where the essential yeast Hsp90 proteins have been replaced with either of the two human cytosolic isoforms Hsp90alpha or Hsp90beta, or with Hsp90 from Plasmodium falciparum (Pf). All strains express large amounts of the Flag-tagged Hsp90 proteins and are viable. Even though the strain with Pf Hsp90 grows more poorly, it provides a tool to reconstitute additional aspects of the parasite Hsp90 complex and its interactions with substrates in yeast as a living test tube. Upon exposure of the set of Hsp90 test strains to the two Hsp90 inhibitors radicicol (Rd) and geldanamycin (GA), we found that the strain with Pf Hsp90 is relatively more sensitive to GA than to Rd compared to the strains with human Hsp90's. This indicates that this set of yeast strains could be used to screen for new Pf Hsp90 inhibitors with a wider therapeutic window.


Asunto(s)
Prueba de Complementación Genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Animales , Benzoquinonas/farmacología , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Genes Esenciales , Proteínas HSP90 de Choque Térmico/genética , Humanos , Lactamas Macrocíclicas/farmacología , Macrólidos/farmacología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Cell Sci ; 119(Pt 21): 4462-6, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17032733

RESUMEN

Cdc14 family phosphatases are highly conserved regulators of cell-cycle progression. Two of the best studied members of this family are budding yeast Cdc14p and its fission yeast homolog Clp1p/Flp1p. The function of both Saccharomyces cerevisiae Cdc14p and Schizosaccharomyces pombe Clp1p/Flp1p are controlled in part by their regulated sequestration and release from the nucleolus. In the budding yeast S. cerevisiae a set of proteins collectively termed the FEAR network promote nucleolar and telomeric DNA segregation by triggering the release of the conserved Cdc14 phosphatase from the nucleolus. Here we show that FEAR homologs in S. pombe do not promote release of the Cdc14 homolog Clp1p/Flp1p from the nucleolus, and that Clp1p/Flp1p is not required for nucleolar and telomeric DNA segregation suggesting that this aspect of Cdc14 regulation and function may not be universally conserved.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Nucléolo Celular/enzimología , Mitosis/fisiología , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Segregación Cromosómica , Fluorescencia , Regulación Fúngica de la Expresión Génica , Schizosaccharomyces/genética , Schizosaccharomyces/crecimiento & desarrollo , Huso Acromático , Telómero/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...