RESUMEN
Staphylococcus aureus is a human-adapted pathogen that replicates by asymptomatically colonizing its host. S. aureus is also the causative agent of purulent skin and soft tissue infections as well as bloodstream infections that result in the metastatic seeding of abscess lesions in all organ tissues. Prolonged colonization, infection, disease relapse, and recurrence point to the versatile capacity of S. aureus to bypass innate and adaptive immune defenses as well as the notion that some hosts fail to generate protective immune responses. Here, we find a genetic trait that provides protection against this pathogen. Mice lacking functional H2-O, the equivalent of human HLA-DO, inoculated with a mouse-adapted strain of S. aureus, efficiently decolonize the pathogen. Further, these decolonized animals resist subsequent bloodstream challenge with methicillin-resistant S. aureus. A genetic approach demonstrates that T-cell dependent B cell responses are required to control S. aureus colonization and infection in H2-O-deficient mice. Reduced bacterial burdens in these animals correlate with increased titers and enhanced phagocytic activity of S. aureus-specific antibodies. H2-O negatively regulates the loading of high affinity peptides on major histocompatibility class II (MHC-II) molecules. Thus, we hypothesize that immune responses against S. aureus are derepressed in mice lacking H2-O because more high affinity peptides are presented by MHC-II. We speculate that loss-of-function HLA-DO alleles may similarly control S. aureus replication in humans.
Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Ratones , Staphylococcus aureus/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Clase II/inmunología , Staphylococcus aureus Resistente a Meticilina/inmunología , HumanosRESUMEN
Gramicidin (Gr) nanoparticles (NPs) and poly (diallyl dimethyl ammonium) chloride (PDDA) water dispersions were characterized and evaluated against Gram-positive and Gram-negative bacteria and fungus. Dynamic light scattering for sizing, zeta potential analysis, polydispersity, and colloidal stability over time characterized Gr NPs/PDDA dispersions, and plating and colony-forming units counting determined their microbicidal activity. Cell viabilities of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans in the presence of the combinations were reduced by 6, 7, and 7 logs, respectively, at 10 µM Gr/10 µg·mL-1 PDDA, 0.5 µM Gr/0. 5µg·mL-1 PDDA, and 0.5 µM Gr/0.5 µg·mL-1 PDDA, respectively. In comparison to individual Gr doses, the combinations reduced doses by half (S. aureus) and a quarter (C. albicans); in comparison to individual PDDA doses, the combinations reduced doses by 6 times (P. aeruginosa) and 10 times (C. albicans). Gr in supported or free cationic lipid bilayers reduced Gr activity against S. aureus due to reduced Gr access to the pathogen. Facile Gr NPs/PDDA disassembly favored access of each agent to the pathogen: PDDA suctioned the pathogen cell wall facilitating Gr insertion in the pathogen cell membrane. Gr NPs/PDDA differential cytotoxicity suggested the possibility of novel systemic uses for the combination.
RESUMEN
Spherical or discoidal lipid polymer nanostructures bearing cationic charges successfully adsorb a variety of oppositely charged antigens (Ag) such as proteins, peptides, nucleic acids, or oligonucleotides. This report provides instructions for the preparation and physical characterization of four different cationic nanostructures able to combine and deliver antigens to the immune system: (1) dioctadecyl dimethylammonium bromide (DODAB) bilayer fragments (DODAB BF); (2) polystyrene sulfate (PSS) nanoparticles (NPs) covered with one cationic dioctadecyl dimethylammonium bromide bilayer (DODAB) named (PSS/DODAB); (3) cationic NPs of biocompatible polymer poly(methyl methacrylate) (PMMA) prepared by emulsion polymerization of the methyl methacrylate (MMA) monomer in the presence of DODAB BF (PMMA/DODAB NPs); (4) antigen NPs (NPs) where the cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA) directly combined at nontoxic and low dose with the antigen (Ag); when the oppositely charged model antigen is ovalbumin (OVA), NPs are named PDDA/OVA. These nanostructures provide adequate microenvironments for carrying and delivering antigens to the antigen-presenting cells of the immune system.
Asunto(s)
Nanopartículas , Vacunas , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Cationes , Ovalbúmina , Polímeros , Polimetil Metacrilato , Compuestos de Amonio CuaternarioRESUMEN
Nanostructures have been of paramount importance for developing immunoadjuvants. They must be cationic and non-cytotoxic, easily assembling with usually oppositely charged antigens such as proteins, haptens or nucleic acids for use in vaccines. We obtained optimal hybrid nanoparticles (NPs) from the biocompatible polymer poly(methyl methacrylate) (PMMA) and the cationic lipid dioctadecyl dimethyl ammonium bromide (DODAB) by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB. NPs adsorbed ovalbumin (OVA) as a model antigen and we determined their adjuvant properties. Interestingly, they elicited high double immune responses of the cellular and humoral types overcoming the poor biocompatibility of DODAB-based adjuvants of the bilayer type. The results suggested that the novel adjuvant would be possibly of use in a variety of vaccines.
RESUMEN
Biocompatible lipid polymer nanoparticles (NPs) previously used as antimicrobial agents are explored here as immuno-adjuvants. Poly (methyl methacrylate) (PMMA)/dioctadecyldimethylammonium bromide (DODAB)/poly (diallyldimethylammonium chloride) (PDDA) nanoparticles (NPs) were prepared by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB and PDDA, with azobisisobutyronitrile (AIBN) as the initiator. NPs characterization after dialysis by dynamic light-scattering yielded 225 ± 2 nm hydrodynamic diameter (Dz), 73 ± 1 mV zeta-potential (ζ), and 0.10 ± 0.01 polydispersity (P). Ovalbumin (OVA) adsorption reduced ζ to 45 ± 2 mV. Balb/c mice immunized with NPs/OVA produced enhanced OVA-specific IgG1 and IgG2a, exhibited moderate delayed type hypersensitivity reaction, and enhanced cytokines production (IL-4, IL-10, IL-2, IFN-γ) by cultured spleen cells. There was no cytotoxicity against cultured macrophages and fibroblasts. Advantages of the PMMA/DODAB/PDDA NPs were high biocompatibility, zeta-potential, colloidal stability, and antigen adsorption. Both humoral and cellular antigen-specific immune responses were obtained.
RESUMEN
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
RESUMEN
Since antigens are negatively charged, they combine well with positively charged adjuvants. Here, ovalbumin (OVA) (0.1 mg·mL-1) and poly (diallyldimethylammonium chloride) (PDDA) (0.01 mg·mL-1) yielded PDDA/OVA assemblies characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM) as spherical nanoparticles (NPs) of 170 ± 4 nm hydrodynamic diameter, 30 ± 2 mV of zeta-potential and 0.11 ± 0.01 of polydispersity. Mice immunization with the NPs elicited high OVA-specific IgG1 and low OVA-specific IgG2a production, indicating a Th-2 response. Delayed-type hypersensitivity reaction (DTH) was low and comparable to the one elicited by Al(OH)3/OVA, suggesting again a Th-2 response. PDDA advantages as an adjuvant were simplicity (a single-component adjuvant), low concentration needed (0.01 mg·mL-1 PDDA) combined with antigen yielding neglectable cytotoxicity, and high stability of PDDA/OVA dispersions. The NPs elicited much higher OVA-specific antibodies production than Al(OH)3/OVA. In vivo, the nano-metric size possibly assured antigen presentation by antigen-presenting cells (APC) at the lymph nodes, in contrast to the location of Al(OH)3/OVA microparticles at the site of injection for longer periods with stimulation of local dendritic cells. In the future, it will be interesting to evaluate combinations of the antigen with NPs carrying both PDDA and elicitors of the Th-1 response.
RESUMEN
Es indiscutible la relevancia de investigaciones realizadas en el ámbito de las enfermedades crónicas no trasmisibles y sus factores de riesgo como es el caso de la Diabetes Mellitus (DM) y la aterosclerosis. El trabajo que de forma tan acertada la Dra. Mayra Agramonte Martínez pone a nuestra consideración; Prevalencia de factores de riesgo de aterosclerosis en pacientes diabéticos tipo II, 1 es un ejemplo del afán del Estado Cubano y los profesionales de la salud de elevar la calidad de vida de la población. En el mundo actual, los hábitos alimentarios inadecuados y tóxicos, y los estilos de vida sedentarios condicionan positivamente la aparición y, cada vez, en edades más tempranas, de enfermedades crónicas no trasmisibles(AU)