Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 584(7820): 252-256, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32760004

RESUMEN

A fundamental challenge in developing treatments for autism spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of cases1-3. Subsets of risk genes can be grouped into functionally related pathways, most prominently those involving synaptic proteins, translational regulation, and chromatin modifications. To attempt to minimize this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4-6, which regulate aspects of social behaviour in mammals7. However, it is unclear whether genetic risk factors predispose individuals to autism as a result of modifications to oxytocinergic signalling. Here we report that an autism-associated mutation in the synaptic adhesion molecule Nlgn3 results in impaired oxytocin signalling in dopaminergic neurons and in altered behavioural responses to social novelty tests in mice. Notably, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3-knockout mice with a new, highly specific, brain-penetrant inhibitor of MAP kinase-interacting kinases resets the translation of mRNA and restores oxytocin signalling and social novelty responses. Thus, this work identifies a convergence between the genetic autism risk factor Nlgn3, regulation of translation, and oxytocinergic signalling. Focusing on such common core plasticity elements might provide a pragmatic approach to overcoming the heterogeneity of autism. Ultimately, this would enable mechanism-based stratification of patient populations to increase the success of therapeutic interventions.


Asunto(s)
Trastorno Autístico/metabolismo , Trastorno Autístico/psicología , Modelos Animales de Enfermedad , Oxitocina/metabolismo , Conducta Social , Animales , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Área Tegmental Ventral/citología , Área Tegmental Ventral/efectos de los fármacos
2.
Nat Neurosci ; 19(2): 233-42, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26691831

RESUMEN

GABAB receptors, the most abundant inhibitory G protein-coupled receptors in the mammalian brain, display pronounced diversity in functional properties, cellular signaling and subcellular distribution. We used high-resolution functional proteomics to identify the building blocks of these receptors in the rodent brain. Our analyses revealed that native GABAB receptors are macromolecular complexes with defined architecture, but marked diversity in subunit composition: the receptor core is assembled from GABAB1a/b, GABAB2, four KCTD proteins and a distinct set of G-protein subunits, whereas the receptor's periphery is mostly formed by transmembrane proteins of different classes. In particular, the periphery-forming constituents include signaling effectors, such as Cav2 and HCN channels, and the proteins AJAP1 and amyloid-ß A4, both of which tightly associate with the sushi domains of GABAB1a. Our results unravel the molecular diversity of GABAB receptors and their postnatal assembly dynamics and provide a roadmap for studying the cellular signaling of this inhibitory neurotransmitter receptor.


Asunto(s)
Proteómica/métodos , Receptores de GABA-B/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Caveolina 2/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Epítopos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G , Receptores de GABA-B/metabolismo , Transducción de Señal/fisiología
3.
J Neurophysiol ; 112(2): 287-99, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24760781

RESUMEN

Synaptic plasticity rules change during development: while hippocampal synapses can be potentiated by a single action potential pairing protocol in young neurons, mature neurons require burst firing to induce synaptic potentiation. An essential component for spike timing-dependent plasticity is the backpropagating action potential (BAP). BAP along the dendrites can be modulated by morphology and ion channel composition, both of which change during late postnatal development. However, it is unclear whether these dendritic changes can explain the developmental changes in synaptic plasticity induction rules. Here, we show that tonic GABAergic inhibition regulates dendritic action potential backpropagation in adolescent, but not preadolescent, CA1 pyramidal neurons. These developmental changes in tonic inhibition also altered the induction threshold for spike timing-dependent plasticity in adolescent neurons. This GABAergic regulatory effect on backpropagation is restricted to distal regions of apical dendrites (>200 µm) and mediated by α5-containing GABA(A) receptors. Direct dendritic recordings demonstrate α5-mediated tonic GABA(A) currents in adolescent neurons which can modulate BAPs. These developmental modulations in dendritic excitability could not be explained by concurrent changes in dendritic morphology. To explain our data, model simulations propose a distally increasing or localized distal expression of dendritic α5 tonic inhibition in mature neurons. Overall, our results demonstrate that dendritic integration and plasticity in more mature dendrites are significantly altered by tonic α5 inhibition in a dendritic region-specific and developmentally regulated manner.


Asunto(s)
Potenciales de Acción , Región CA1 Hipocampal/fisiología , Dendritas/fisiología , Antagonistas del GABA/farmacología , Plasticidad Neuronal , Células Piramidales/fisiología , Animales , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/crecimiento & desarrollo , Región CA1 Hipocampal/metabolismo , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Potenciales Postsinápticos Excitadores , Agonistas del GABA/farmacología , Potenciales Postsinápticos Inhibidores , Masculino , Células Piramidales/efectos de los fármacos , Células Piramidales/crecimiento & desarrollo , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/metabolismo
4.
J Physiol ; 591(7): 1599-612, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23184512

RESUMEN

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABA(B) receptors inhibit calcium-mediated electrogenesis (Ca(2+) spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca(2+) spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca(2+) imaging we found that all subtypes of VDCCs were present in the Ca(2+) spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca(2+) spikes. Particularly, Ca(v)1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca(2+) spike. Activation of GABA(B) receptors specifically inhibited Ca(v)1 channels. This inhibition of L-type Ca(2+) currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the G(i/o)-ßγ-subunit with Ca(v)1 channels identifying this mechanism as the general pathway of GABA(B) receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca(2+) spike provides new insights into the molecular mechanism of dendritic computation.


Asunto(s)
Canales de Calcio/fisiología , Células Piramidales/fisiología , Receptores de GABA-B/fisiología , Animales , Calcio/fisiología , Dendritas/fisiología , Subunidades de Proteína/fisiología , Ratas Wistar , Corteza Somatosensorial/fisiología , Ácido gamma-Aminobutírico/fisiología
5.
Nature ; 457(7233): 1137-41, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19151696

RESUMEN

The computational power of single neurons is greatly enhanced by active dendritic conductances that have a large influence on their spike activity. In cortical output neurons such as the large pyramidal cells of layer 5 (L5), activation of apical dendritic calcium channels leads to plateau potentials that increase the gain of the input/output function and switch the cell to burst-firing mode. The apical dendrites are innervated by local excitatory and inhibitory inputs as well as thalamic and corticocortical projections, which makes it a formidable task to predict how these inputs influence active dendritic properties in vivo. Here we investigate activity in populations of L5 pyramidal dendrites of the somatosensory cortex in awake and anaesthetized rats following sensory stimulation using a new fibre-optic method for recording dendritic calcium changes. We show that the strength of sensory stimulation is encoded in the combined dendritic calcium response of a local population of L5 pyramidal cells in a graded manner. The slope of the stimulus-response function was under the control of a particular subset of inhibitory neurons activated by synaptic inputs predominantly in L5. Recordings from single apical tuft dendrites in vitro showed that activity in L5 pyramidal neurons disynaptically coupled via interneurons directly blocks the initiation of dendritic calcium spikes in neighbouring pyramidal neurons. The results constitute a functional description of a cortical microcircuit in awake animals that relies on the active properties of L5 pyramidal dendrites and their very high sensitivity to inhibition. The microcircuit is organized so that local populations of apical dendrites can adaptively encode bottom-up sensory stimuli linearly across their full dynamic range.


Asunto(s)
Dendritas/fisiología , Interneuronas/fisiología , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Anestesia , Animales , Calcio/metabolismo , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Modelos Neurológicos , Ratas , Ratas Wistar , Vigilia/fisiología
6.
J Neurophysiol ; 98(3): 1791-805, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17634346

RESUMEN

Calcium influx into the dendritic tufts of layer 5 neocortical pyramidal neurons modifies a number of important cellular mechanisms. It can trigger local synaptic plasticity and switch the firing properties from regular to burst firing. Due to methodological limitations, our knowledge about Ca2+ spikes in the dendritic tuft stems mostly from in vitro experiments. However, it has been speculated that regenerative Ca2+ events in the distal dendrites correlate with distinct behavioral states. Therefore it would be most desirable to be able to record these Ca2+ events in vivo, preferably in the behaving animal. Here, we present a novel approach for recording Ca2+ signals in the dendrites of populations of layer 5 pyramidal neurons in vivo, which ensures that all recorded fluorescence changes are due to intracellular Ca2+ signals in the apical dendrites. The method has two main features: 1) bolus loading of layer 5 with a membrane-permeant Ca2+ dye resulting in specific loading of pyramidal cell dendrites in the upper layers and 2) a fiberoptic cable attached to a gradient index lens and a prism reflecting light horizontally at 90 degrees to the angle of the apical dendrites. We demonstrate that the in vivo signal-to-noise ratio recorded with this relatively inexpensive and easy-to-implement fiberoptic-based device is comparable to conventional camera-based imaging systems used in vitro. In addition, the device is flexible and lightweight and can be used for recording Ca2+ signals in the distal dendritic tuft of freely behaving animals.


Asunto(s)
Calcio/fisiología , Dendritas/fisiología , Tecnología de Fibra Óptica/métodos , Actividad Motora/fisiología , Células Piramidales/fisiología , Transducción de Señal/fisiología , Animales , Permeabilidad de la Membrana Celular , Femenino , Fluorescencia , Plasticidad Neuronal , Fotones , Ratas , Ratas Wistar , Sinapsis/fisiología
7.
Neuron ; 50(4): 603-16, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16701210

RESUMEN

The apical tuft of layer 5 pyramidal neurons is innervated by a large number of inhibitory inputs with unknown functions. Here, we studied the functional consequences and underlying molecular mechanisms of apical inhibition on dendritic spike activity. Extracellular stimulation of layer 1, during blockade of glutamatergic transmission, inhibited the dendritic Ca2+ spike for up to 400 ms. Activation of metabotropic GABAB receptors was responsible for a gradual and long-lasting inhibitory effect, whereas GABAA receptors mediated a short-lasting (approximately 150 ms) inhibition. Our results suggest that the mechanism underlying the GABAB inhibition of Ca2+ spikes involves direct blockade of dendritic Ca2+ channels. By using knockout mice for the two predominant GABAB1 isoforms, GABAB1a and GABAB1b, we showed that postsynaptic inhibition of Ca2+ spikes is mediated by GABAB1b, whereas presynaptic inhibition of GABA release is mediated by GABAB1a. We conclude that the molecular subtypes of GABAB receptors play strategically different physiological roles in neocortical neurons.


Asunto(s)
Dendritas/metabolismo , Potenciales de la Membrana/fisiología , Inhibición Neural/fisiología , Células Piramidales/metabolismo , Corteza Somatosensorial/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Calcio/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , Técnicas de Placa-Clamp , Isoformas de Proteínas/metabolismo , Ratas , Receptores de GABA-B/metabolismo
8.
J Neurophysiol ; 94(6): 3771-87, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16120665

RESUMEN

The modulatory effect of D(2) dopamine receptor activation on calcium currents was studied in neostriatal projection neurons at two stages of rat development: postnatal day (PD)14 and PD40. D(2)-class receptor agonists reduced whole cell calcium currents by about 35% at both stages, and this effect was blocked by the D(2) receptor antagonist sulpiride. Nitrendipine partially occluded this modulation at both stages, indicating that modulation of Ca(V)1 channels was present throughout this developmental interval. Nevertheless, modulation of Ca(V)1 channels was significantly larger in PD40 neurons. omega-Conotoxin GVIA occluded most of the Ca(2+) current modulation in PD14 neurons. However, this occlusion was greatly decreased in PD40 neurons. omega-Agatoxin TK occluded a great part of the modulation in PD40 neurons but had a negligible effect in PD14 neurons. The data indicate that dopaminergic D(2)-mediated modulation undergoes a change in target during development: from Ca(V)2.2 to Ca(V)2.1 Ca(2+) channels. This change occurred while Ca(V)2.2 channels were being down-regulated and Ca(V)2.1 channels were being up-regulated. Presynaptic modulation mediated by D(2) receptors reflected these changes; Ca(V)2.2 type channels were used for release in young animals but very little in mature animals, suggesting that changes took place simultaneously at the somatodendritic and the synaptic membranes.


Asunto(s)
Caveolina 2/fisiología , Neostriado/citología , Neuronas/fisiología , Receptores de Dopamina D2/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Quelantes/farmacología , Agonistas de Dopamina/farmacología , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neostriado/crecimiento & desarrollo , Técnicas de Placa-Clamp/métodos , Quinolinas/farmacología , Ratas , Ratas Wistar , Factores de Tiempo
9.
Int J Psychophysiol ; 50(3): 213-24, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14585490

RESUMEN

38 h of sleep deprivation in women resulted in decreased alpha, increased theta and increased intrahemispheric correlation during rest and increased theta and reaction time during task. F3-O1 coherent activity was selectively decreased consistent with the role of sleep for recovery of frontal functions. Sleep deprivation effects were milder in women than in men, however, recovery was not complete suggesting that women need more sleep than men to recover.


Asunto(s)
Electroencefalografía , Privación de Sueño/fisiopatología , Adulto , Ritmo alfa , Nivel de Alerta/fisiología , Femenino , Lateralidad Funcional/fisiología , Humanos , Masculino , Desempeño Psicomotor , Tiempo de Reacción/fisiología , Caracteres Sexuales , Ritmo Teta
10.
Neuroreport ; 14(9): 1253-6, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12824770

RESUMEN

Blockade of L-type Ca2+ channels results in a decrease in firing frequency of neostriatal neurons. In contrast, N- and P/Q-types of Ca2+ channel cooperate to tune firing pattern, since both of these channel types have to be blocked to enhance firing frequency. Parameters of the intensity-frequency plot were differentially modified by Ca2+ channel antagonists: while L-type Ca2+ channel block reduced the dynamic range by about 80%, block of N- and P/Q-types of Ca2+ channel generated a steeper intensity-frequency plot. These effects are explained in terms of the sustained depolarization and the afterhyperpolarizing potential known to be dependent upon L- and N-, P/Q-types of Ca2+ channels, respectively.


Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio/fisiología , Cuerpo Estriado/fisiología , Neuronas/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Cuerpo Estriado/efectos de los fármacos , Masculino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...