Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(17): 5281-5300, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37410135

RESUMEN

Perennial grasses are potentially abundant sources of biomass for biorefineries, which can produce high yields with low input requirements, and many added environmental benefits. However, perennial grasses are highly recalcitrant to biodegradation and may require pretreatment before undergoing many biorefining pathways. Microbial pretreatment uses the ability of microorganisms or their enzymes to deconstruct plant biomass and enhance its biodegradability. This process can enhance the enzymatic digestibility of perennial grasses, enabling saccharification with cellulolytic enzymes to produce fermentable sugars and derived fermentation products. Similarly, microbial pretreatment can increase the methanation rate when the grasses are used to produce biogas through anaerobic digestion. Microorganisms can also increase the digestibility of the grasses to improve their quality as animal feed, enhance the properties of grass pellets, and improve biomass thermochemical conversion. Metabolites produced by fungi or bacteria during microbial pretreatment, such as ligninolytic and cellulolytic enzymes, can be further recovered as added-value products. Additionally, the action of the microorganisms can release chemicals with commercialization potential, such as hydroxycinnamic acids and oligosaccharides, from the grasses. This review explores the recent advances and remaining challenges in using microbial pretreatment for perennial grasses with the goal of obtaining added-value products through biorefining. It emphasizes recent trends in microbial pretreatment such as the use of microorganisms as part of microbial consortia or in unsterilized systems, the use and development of microorganisms and consortia capable of performing more than one biorefining step, and the use of cell-free systems based on microbial enzymes. KEY POINTS: • Microorganisms or enzymes can reduce the recalcitrance of grasses for biorefining • Microbial pretreatment effectiveness depends on the grass-microbe interaction • Microbial pretreatment can generate value added co-products to enhance feasibility.


Asunto(s)
Lignina , Poaceae , Animales , Lignina/química , Fermentación , Biocombustibles , Biomasa
2.
ACS Omega ; 7(38): 34521-34527, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36188332

RESUMEN

Gold nanoparticles (AuNPs) are commonly synthesized using the citrate reduction method, reducing Au3+ into Au1+ ions and facilitating the disproportionation of aurous species to Au atoms (Au0). This method results on citrate-capped AuNPs with valence single states Au0. Here, we report a methodology that allows obtaining AuNPs by the dewetting process with three different valence states (Au3+, Au1+, and Au0), which can be fine-tuned with ion bombardment. The chemical surface changes and binding state of the NPs were investigated using core-level X-ray photoelectron spectroscopy (XPS). This is achieved by recording high-resolution Au 4f XPS spectra as a function of ion dose exposure. The results obtained show a time-dependent tuning effect on the Au valence states using low-energy 200 V acceleration voltage Ar+ ion bombardment, and the valence state conversion kinetics involves the reduction from Au3+ and Au1+ to Au0. Proper control of the reduction in the valence states is critical in surface engineering for controlling catalytic reactions.

3.
Nanoscale Adv ; 4(15): 3194-3211, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36132820

RESUMEN

Scanning thermal microscopy (SThM) is a powerful technique for thermal characterization. However, one of the most challenging aspects of thermal characterization is obtaining quantitative information on thermal conductivity with nanoscale lateral resolution. We used this technique with the cross-point calibration method to obtain the thermal contact resistance, R c, and thermal exchange radius, b, using thermo-resistive Pd/Si3N4 probes. The cross-point curves correlate the dependence of R c and b with the sample's thermal conductivity. We implemented a 3ω-SThM method in which reference samples with known thermal conductivity were used in the calibration and validation process to guarantee optimal working conditions. We achieved values of R c = 0.94 × 106 ± 0.02 K W-1 and b = 2.41 × 10-7 ± 0.02 m for samples with a low thermal conductivity (between 0.19 and 1.48 W m-1 K-1). These results show a large improvement in spatial resolution over previously reported data for the Wollaston probes (where b ∼ 2.8 µm). Furthermore, the contact resistance with the Pd/Si3N4 is ∼20× larger than reported for a Wollaston wire probe (with 0.45 × 105 K W-1). These thermal parameters were used to determine the unknown thermal conductivity of thermoelectric films of Ag2Se, Ag2-x Se, Cu2Se (smooth vs. rough surface), and Bi2Te3, obtaining, in units of W m-1 K-1, the values of 0.63 ± 0.07, 0.69 ± 0.15, 0.79 ± 0.03, 0.82 ± 0.04, and 0.93 ± 0.12, respectively. To the best of our knowledge, this is the first time these microfabricated probes have been calibrated using the cross-point method to perform quantitative thermal analysis with nanoscale resolution. Moreover, this work shows high-resolution thermal images of the V 1ω and V 3ω signals, which can offer relevant information on the material's heat dissipation.

4.
ACS Omega ; 6(28): 18190-18199, 2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34308050

RESUMEN

Heavy metal pollution is posing a severe health risk on living organisms. Therefore, significant research efforts are focused on their detection. Here, we developed a sensing platform sensor for the selective detection of lead(II) acetate. The sensor is based on self-assembled polyethyleneimine-functionalized carbon nanotubes (PEI-CNTs) and graphene oxide films deposited onto gold interdigitated electrodes. The graphene-based nanostructure showed a resistive behavior, and the fabricated layer-by-layer film was used to detect Pb(II) acetate in an aqueous solution by comparison of three electrochemical methods: impedance spectroscopy, amperometry, and potentiometry stripping analysis. The results obtained from different methods show that the detection limit was down to 36 pmol/L and the sensitivity up to 4.3 µAL/µmol, with excellent repeatability. The detection mechanism was associated with the high affinity of heavy metal ions with the functional groups present in the PEI-CNTs and GO, allowing high performance and sensitivity. The achieved results are important for the research toward integrated monitoring and sensing platforms for Pb(II) contamination in drinking water.

5.
Sci Rep ; 6: 32778, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27650202

RESUMEN

In this work, we measure the thermal and thermoelectric properties of large-area Si0.8Ge0.2 nano-meshed films fabricated by DC sputtering of Si0.8Ge0.2 on highly ordered porous alumina matrices. The Si0.8Ge0.2 film replicated the porous alumina structure resulting in nano-meshed films. Very good control of the nanomesh geometrical features (pore diameter, pitch, neck) was achieved through the alumina template, with pore diameters ranging from 294 ± 5nm down to 31 ± 4 nm. The method we developed is able to provide large areas of nano-meshes in a simple and reproducible way, being easily scalable for industrial applications. Most importantly, the thermal conductivity of the films was reduced as the diameter of the porous became smaller to values that varied from κ = 1.54 ± 0.27 W K(-1)m(-1), down to the ultra-low κ = 0.55 ± 0.10 W K(-1)m(-1) value. The latter is well below the amorphous limit, while the Seebeck coefficient and electrical conductivity of the material were retained. These properties, together with our large area fabrication approach, can provide an important route towards achieving high conversion efficiency, large area, and high scalable thermoelectric materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA